Skip to main content

Multi-agent Learning and the Reinforcement Gradient

  • Conference paper
  • 925 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7541))

Abstract

This article shows that seemingly diverse implementations of multi-agent reinforcement learning share the same basic building block in their learning dynamics: a mathematical term that is closely related to the gradient of the expected reward. Gradient Ascent on the expected reward has been used to derive strong convergence results in two-player two-action games, at the expense of strong assumptions such as full information on the game that is being played. Variations of Gradient Ascent, such as Infinitesimal Gradient Ascent (IGA), Win-or-Learn-Fast IGA, and Weighted Policy Learning (WPL), assume a known value function for which the reinforcement gradient can be computed directly. In contrast, independent multi-agent reinforcement learning algorithms that assume less information on the game being played such as Cross learning, variations of Q-learning and Regret minimization base their learning on feedback from discrete interactions with the environment, requiring neither an explicit representation of the value function nor its gradient. Despite this much stricter limitation on information available to these algorithms, they yield dynamics which are very similar to Gradient Ascent and exhibit equivalent convergence behavior. In addition to the formal derivation, directional field plots of the learning dynamics in representative classes of two-player two-action games illustrate the similarities and strengthen the theoretical findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah, S., Lesser, V.: A multiagent reinforcement learning algorithm with non-linear dynamics. Journal of Artificial Intelligence Research 33(1), 521–549 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Blum, A., Mansour, Y.: Learning, regret minimization and equilibria. Cambridge University Press (2007)

    Google Scholar 

  3. Börgers, T., Sarin, R.: Learning through reinforcement and replicator dynamics. Journal of Economic Theory 77(1) (November 1997)

    Google Scholar 

  4. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artificial Intelligence 136, 215–250 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(2), 156–172 (2008)

    Article  Google Scholar 

  6. Crandall, J.W., Ahmed, A., Goodrich, M.A.: Learning in repeated games with minimal information: The effects of learning bias. In: Twenty-Fifth AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

  7. Cross, J.G.: A stochastic learning model of economic behavior. The Quarterly Journal of Economics 87(2), 239 (1973)

    Article  Google Scholar 

  8. Gibbons, R.: A Primer in Game Theory. Pearson Education (1992)

    Google Scholar 

  9. Gintis, H.: Game Theory Evolving, 2nd edn. University Press, Princeton (2009)

    MATH  Google Scholar 

  10. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press (2002)

    Google Scholar 

  11. Kaisers, M., Tuyls, K.: Frequency adjusted multi-agent Q-learning. In: Proc. of 9th Intl. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010), May 10-14, pp. 309–315 (2010)

    Google Scholar 

  12. Kaisers, M., Tuyls, K.: Faq-learning in matrix games: Demonstrating convergence near nash equilibria, and bifurcation of attractors in the battle of sexes. In: Proceedings of the Workshop on Interactive Decision Theory and Game Theory (2011)

    Google Scholar 

  13. Klos, T., van Ahee, G.J., Tuyls, K.: Evolutionary Dynamics of Regret Minimization. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part II. LNCS, vol. 6322, pp. 82–96. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Maynard Smith, J., Price, G.R.: The logic of animal conflict. Nature 246(2), 15–18 (1973)

    Article  Google Scholar 

  15. Narendra, K.S., Thathachar, M.A.L.: Learning automata - a survey. IEEE Transactions on Systems, Man, and Cybernetics 4(4), 323–334 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sandholm, W.H.: Population Games and Evolutionary Dynamics. The MIT Press, Cambridge (2010)

    MATH  Google Scholar 

  17. Singh, S., Kearns, M., Mansour, Y.: Nash convergence of gradient dynamics in general-sum games. In: Proc. of the 16th Conference on Uncertainty in Artificial Intelligence, pp. 541–548 (2000)

    Google Scholar 

  18. Sutton, R., Barto, A.: Reinforcement Learning: An introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  19. Thathachar, M.A.L., Sastry, P.S.: Varieties of learning automata: An overview. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics 32(6), 711–722 (2002)

    Article  Google Scholar 

  20. Tuyls, K., Jan’t Hoen, P., Vanschoenwinkel, B.: An evolutionary dynamical analysis of multi-agent learning in iterated games. Autonomous Agents and Multi-Agent Systems 12, 115–153 (2006)

    Article  Google Scholar 

  21. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaisers, M., Bloembergen, D., Tuyls, K. (2012). Multi-agent Learning and the Reinforcement Gradient. In: Cossentino, M., Kaisers, M., Tuyls, K., Weiss, G. (eds) Multi-Agent Systems. EUMAS 2011. Lecture Notes in Computer Science(), vol 7541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34799-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34799-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34798-6

  • Online ISBN: 978-3-642-34799-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics