Skip to main content

A New Feature Selection Method Based on Stability Theory – Exploring Parameters Space to Evaluate Classification Accuracy in Neuroimaging Data

  • Conference paper
Machine Learning and Interpretation in Neuroimaging

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7263))

Abstract

Recently we proposed a feature selection method based on stability theory. In the present work we present an evaluation of its performance in different contexts through a grid search performed in a subset of its parameters space. The main contributions of this work are: we show that the method can improve the classification accuracy in relation to the wholebrain in different functional datasets; we evaluate the parameters influence in the results, getting some insight in reasonable ranges of values; and we show that combinations of parameters that yield the best accuracies are stable (i.e., they have low rates of false positive selections).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mourao-Miranda, J., Bokde, A., Born, C., Hampel, H., Stetter, M.: Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional mridata. Neuroimage 95, 980–995 (2005)

    Article  Google Scholar 

  2. Fu, C.H., Mourao-Miranda, J., Costafreda, S.G., Khanna, A., Marquand, A.F., Williams, S.C., Brammer, M.J.: Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol. Psychiatry 63(7), 656–662 (2008)

    Article  Google Scholar 

  3. Koutsouleris, N., Meisenzahl, E., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., Schmitt, G., Zetzsche, T., Decker, P., Reiser, M., Möller, H., Gaser, C.: Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch. Gen. Psychiatry 76, 700–712 (2009)

    Article  Google Scholar 

  4. Marquand, A., Howard, M., Brammer, M., Chu, C., Coen, S., Mouro-Miranda, J.: Quantitative pre- diction of subjective pain intensity from whole-brain fmri data using gaussian processes. Neuroimage 49, 2178–2189 (2010)

    Article  Google Scholar 

  5. Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E.M., Brammer, M.J., Murphy, C., Murphy, D.G., MRC AIMS Consortium: Investigating the predictive value of whole-brain structural mr scans in autism: a pattern classification approach. Neuroimage 49, 44–56 (2010)

    Article  Google Scholar 

  6. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Alzheimer’s Disease Neuroimaging Initiative: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2010)

    Article  Google Scholar 

  7. Guyon, I., Elisseefi, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  8. De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., Formisano, E.: Combining 19 multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns. Neuroimage 43, 44–58 (2008)

    Article  Google Scholar 

  9. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Haussler, D. (ed.) 5th Annual ACM Workshop on COLT, pp. 144–152. ACM Press, Pittsburgh (1992)

    Google Scholar 

  10. Vapnik, V.: Statistical Learning Theory. Wiley (1998)

    Google Scholar 

  11. Langs, G., Menze, B., Lashkari, D., Golland, P.: Detecting stable distributed patterns of brain activation using gini contrast. Neuroimage 56, 497–507 (2011)

    Article  Google Scholar 

  12. Rondina, J.M., Marquand, A.F., Hahn, T., Shawe-Taylor, J., Mourao-Miranda, J.: Selecting features based on stability to classify depressed patients in fMRI. In: 17th Annual Meeting of the Organization for Human Brain Mapping, Quebec City, abstract 4181 (2011)

    Google Scholar 

  13. Meinshausen, N., Buhlmann, P.: Stability selection. Journal of the Royal Statistical Society 72, 417–473 (2010)

    Article  MathSciNet  Google Scholar 

  14. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Bunea, F., She, Y., Ombao, H., Gongvatana, A., Devlin, K., Cohen, R.: Penalized least squares regression methods and applications to neuroimaging. Neuroimage 55(4), 1519–1527 (2011)

    Article  Google Scholar 

  16. Wager, T.D., Atlas, L.Y., Leotti, L.A., Rilling, J.K.: Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. Journal of Neuroscience 31(2), 439–452 (2011)

    Article  Google Scholar 

  17. Ng, B., Abugharbieh, R.: Generalized Sparse Regularization with Application to fMRI Brain Decoding. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 612–623. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Ng, B., Abugharbieh, R., Varoquaux, G., Poline, J.B., Thirion, B.: Connectivity-Informed fMRI Activation Detection. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 285–292. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Funamizu, A., Kanzaki, R., Takahashi, H.: Distributed representation of tone frequency in highly decodable spatio-temporal activity in the auditory cortex. Neural Netw. 24, 321–322 (2011)

    Article  Google Scholar 

  20. Fan, Y., Shen, D., Davatzikos, C.: Classification of Structural Images via High-Dimensional Image Warping, Robust Feature Extraction, and SVM. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 1–8. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Mourao-Miranda, J., Reinders, A.A.T.S., Rocha-Rego, V., Lappin, J., Rondina, J., Morgan, C., Morgan, K.D., Fearon, P., Jones, P.B., Doody, G.A., Murray, R.M., Kapur, S., Dazzan, P.: Individualised Prediction of Illness Course at the First Psychotic Episode: a Support Vector Machine MRI Study. Psychological Medicine (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rondina, J.M., Shawe-Taylor, J., Mourão-Miranda, J. (2012). A New Feature Selection Method Based on Stability Theory – Exploring Parameters Space to Evaluate Classification Accuracy in Neuroimaging Data. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34713-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34712-2

  • Online ISBN: 978-3-642-34713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics