Skip to main content

Variational Bayesian Learning of Sparse Representations and Its Application in Functional Neuroimaging

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7263))

Abstract

Recent theoretical and experimental work in imaging neuroscience reveals that activations inferred from functional MRI data have sparse structure. We view sparse representation as a problem in Bayesian inference, following a machine learning approach, and construct a structured generative latent-variable model employing adaptive sparsity-inducing priors. The construction allows for automatic complexity control and regularization as well as denoising. Experimental results with benchmark datasets show that the proposed algorithm outperforms standard tools for model-free decompositions such as independent component analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Worsley, K., Friston, K.: Analysis of fMRI time series revisited—again. NeuroImage 2, 173–181 (1995)

    Article  Google Scholar 

  2. Beckmann, C., Smith, S.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imag. 23, 137–152 (2004)

    Article  Google Scholar 

  3. McKeown, M., Sejnowski, T.: Independent component analysis of fMRI data: examining the assumptions. Hum. Brain Mapp. 6, 5–6, 368–372 (1998)

    Article  Google Scholar 

  4. Daubechies, I., Roussos, E., Takerkart, S., Benharrosh, M., Golden, C., D’Ardenne, K., Richter, W., Cohen, J., Haxby, J.: Independent component analysis for brain fMRI does not select for independence. PNAS 106(26), 10415–10422 (2009)

    Article  Google Scholar 

  5. Carroll, M., Cecchi, G., Rish, I., Garg, R., Rao, A.: Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44(1), 112–122 (2009)

    Article  Google Scholar 

  6. Li, Y., Cichocki, A., Amari, S.-I., Shishkin, S., Cao, J., Gu, F.: Sparse representation and its applications in blind source separation. In: Proceedings of the Annual Conference on Neural Information Processing Systems 17 (2003)

    Google Scholar 

  7. Turkheimer, F., Brett, M., Aston, J., Leff, A., Sargent, P., Wise, R., Grasby, P., Cunningham, V.: Statistical modelling of PET images in wavelet space. Journal of Cerebral Blood Flow and Metabolism 20, 1610–1618 (2001)

    Google Scholar 

  8. Bullmore, E., Fadili, J., Breakspear, M., Salvador, R., Suckling, J., Brammer, M.: Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Statistical Methods in Medical Research 12, 375–399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. MacKay, D.: Probable Networks and Plausible Predictions - A Review of Practical Bayesian Methods for Supervised Neural Networks. Network: Computation in Neural Systems 6, 469–505 (1995)

    Article  MATH  Google Scholar 

  10. Attias, H.: A Variational Bayesian Framework for Graphical Models. In: Proceedings of Advances in Neural Information Processing Systems, vol. 12 (2000)

    Google Scholar 

  11. Penny, W., Roberts, S.: Variational Bayes for 1-dimensional Mixture Models. Techn. Rep. PARG–00–2, Dept. of Engineering Science, University of Oxford (2000)

    Google Scholar 

  12. Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C., Behrens, T., Johansen-Berg, H., Bannister, P., De Luca, M., Drobnjak, I., Flitney, D., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J., Matthews, P.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(S1), 208–219 (2004)

    Article  Google Scholar 

  13. Choudrey, R., Penny, W., Roberts, S.: An Ensemble Learning Approach to Independent Component Analysis. In: Proceedings of Neural Networks for Signal Processing (2000)

    Google Scholar 

  14. Roussos, E., Roberts, S., Daubechies, I.: Variational Bayesian Learning for Wavelet Independent Component Analysis. In: 25th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, vol. 25 (2005)

    Google Scholar 

  15. Groves, A.: Bayesian Learning Methods for Modelling Functional MRI. D.Phil. Thesis, Department of Clinical Neurology, University of Oxford (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roussos, E., Roberts, S., Daubechies, I. (2012). Variational Bayesian Learning of Sparse Representations and Its Application in Functional Neuroimaging. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34713-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34712-2

  • Online ISBN: 978-3-642-34713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics