Skip to main content

Relating Brain Functional Connectivity to Anatomical Connections: Model Selection

  • Conference paper
Machine Learning and Interpretation in Neuroimaging

Abstract

We aim to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity. Following [1], we formulate this problem as estimating a multivariate autoregressive (MAR) model with sparse linear regression. We introduce a model selection framework based on cross-validation. We select the appropriate sparsity of the connectivity matrices and demonstrate that choosing an ordering for the MAR that lends to sparser models is more appropriate than a random. Finally, we suggest randomized Least Absolute Shrinkage and Selective Operator (LASSO) in order to identify relevant anatomo-functional links with better recovery of ground truth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deligianni, F., Varoquaux, G., Thirion, B., Robinson, E., Sharp, D.J., Edwards, A.D., Rueckert, D.: A Probabilistic Framework to Infer Brain Functional Connectivity from Anatomical Connections. In: SzĆ©kely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol.Ā 6801, pp. 296ā€“307. Springer, Heidelberg (2011)

    ChapterĀ  Google ScholarĀ 

  2. Sporns, O.: The non-random brain: efficiency, economy, and complex dynamics. Front Comput. Neurosc.Ā 5, 5 (2011)

    ArticleĀ  Google ScholarĀ 

  3. Burns, J.: An evolutionary theory of schizophrenia: Cortical connectivity, metarepresentation, and the social brain. Behavioral and Brain SciencesĀ 27(6), 831 (2004)

    Google ScholarĀ 

  4. Muller, R.: The study of autism as a distributed disorder. Mental Retardation and Developmental Disability ResearchĀ 13(1), 85ā€“95 (2007)

    ArticleĀ  Google ScholarĀ 

  5. Pollonini, L., et al.: Information communication networks in severe traumatic brain injury. Brain Topogr.Ā 23(2), 221ā€“226 (2010)

    ArticleĀ  Google ScholarĀ 

  6. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci.Ā 10, 186ā€“198 (2009)

    ArticleĀ  Google ScholarĀ 

  7. Zhang, D., Raichle, M.E.: Disease and the brainā€™s dark energy. Nat. Rev. Neurol.Ā 6(1), 15ā€“28 (2010)

    ArticleĀ  Google ScholarĀ 

  8. Honey, C., et al.: Predicting human resting-state functional connectivity from structural connectivity. P. Natl. Acad. Sci. USAĀ 106(6), 2035ā€“2040 (2009)

    ArticleĀ  Google ScholarĀ 

  9. Hagmann, P., et al.: Mapping the structural core of human cerebral cortex. PLoS Biol.Ā 6(7), 1479ā€“1493 (2008)

    ArticleĀ  Google ScholarĀ 

  10. Greicius, M.D., et al.: Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral CortexĀ 19(1), 72ā€“78 (2009)

    ArticleĀ  Google ScholarĀ 

  11. van den Heuvel, M., et al.: Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J. Neurosci.Ā 28(43), 10844ā€“10851 (2008)

    ArticleĀ  Google ScholarĀ 

  12. Varoquaux, G., et al.: Brain covariance selection: better individual functional connectivity models using population prior. In: NIPS (2010)

    Google ScholarĀ 

  13. Lauritzen, S.: Graphical models. Oxford University Press, USA (1996)

    MATHĀ  Google ScholarĀ 

  14. Amestoy, P., et al.: An approximate minimum degree ordering algorithm. SIAM Journal on Matrix Analysis and ApplicationsĀ 17(4), 886ā€“905 (1996)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  15. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Statist. Soc. BĀ 58(1), 267ā€“288 (1996)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  16. Donoho, D.: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Comm. Pure Appl. Math.Ā 59(6), 797ā€“829 (2006)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  17. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. JMLRĀ 12, 2825ā€“2830 (2011)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. Varoquaux, G., Baronnet, F., Kleinschmidt, A., Fillard, P., Thirion, B.: Detection of Brain Functional-Connectivity Difference in Post-stroke Patients Using Group-Level Covariance Modeling. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol.Ā 6361, pp. 200ā€“208. Springer, Heidelberg (2010)

    ChapterĀ  Google ScholarĀ 

  19. Meinshausen, N., Buhlmann, P.: Stability selection. Journal of the Royal Statistical Society: Series BĀ 27, 417ā€“473 (2010)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  20. Zhang, C.-H., Huang, J.: The sparsity and bias of the lasso selection in high-dimensional linear regression. Annals of StatisticsĀ 36, 1567ā€“1594 (2008)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  21. Smith, S., et al.: Advances in functional and structural MR image analysis and implementation as fsl. NeuroImageĀ 23, 208ā€“219 (2004)

    ArticleĀ  Google ScholarĀ 

  22. Aljabar, P., et al.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImageĀ 46(3), 726ā€“738 (2009)

    ArticleĀ  Google ScholarĀ 

  23. Friston, K.: Statistical parametric mapping: the analysis of functional brain images. Academic Press (2007)

    Google ScholarĀ 

  24. Behrens, T., et al.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnet Reson. Med.Ā 50(5), 1077ā€“1088 (2003)

    ArticleĀ  Google ScholarĀ 

  25. Robinson, E., et al.: Identifying population differences in whole-brain structural networks: a machine learning approach. NeuroImageĀ 50(3), 910ā€“919 (2010)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deligianni, F. et al. (2012). Relating Brain Functional Connectivity to Anatomical Connections: Model Selection. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34713-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34712-2

  • Online ISBN: 978-3-642-34713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics