Skip to main content

Decoding Complex Cognitive States Online by Manifold Regularization in Real-Time fMRI

  • Conference paper
  • 2198 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7263))

Abstract

Human decision making is complex and influenced by many factors on multiple time scales, reflected in the numerous brain networks and connectivity patterns involved as revealed by fMRI.

We address mislabeling issues in paradigms involving complex cognition, by considering a manifold regularizing prior for modeling a sequence of neural events leading to a decision. The method is directly applicable for online learning in the context of real-time fMRI, and our experimental results show that the method can efficiently avoid model degeneracy caused by mislabeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaschko, M., Shelton, J., Bartels, A.: Augmenting feature-driven fmri analyses: Semi-supervised learning and resting state activity. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22, pp. 126–134 (2009)

    Google Scholar 

  2. Davatzikos, C., Ruparel, K., Fan, Y., Shen, D.G., Acharyya, M., Loughead, J.W., Gur, R.C., Langleben, D.D.: Classifying spatial patterns of brain activity with machine learning methods: application to lie detection. NeuroImage 28(3), 663–668 (2005), http://www.ncbi.nlm.nih.gov/pubmed/16169252

    Article  Google Scholar 

  3. Guyon, I., Cawley, G., Dror, G., Lemaire, V.: Results of the active learning challenge. Journal of Machine Learning Research 16, 19–45 (2011)

    Google Scholar 

  4. Haynes, J.D., Sakai, K., Rees, G., Gilbert, S., Frith, C., Passingham, R.E.: Reading hidden intentions in the human brain. Current Biology: CB 17(4), 323–328 (2007), http://www.ncbi.nlm.nih.gov/pubmed/17291759

    Article  Google Scholar 

  5. Kriegeskorte, N., Goebel, R., Bandettini, P.: Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America 103(10), 3863–3868 (2006), http://www.ncbi.nlm.nih.gov/pubmed/16537458

    Article  Google Scholar 

  6. LaConte, S.M., Peltier, S.J., Hu, X.P.: Real-time fMRI using brain-state classification. Hum. Brain Mapp. 28, 1033–1044 (2007), http://dx.doi.org/10.1002/hbm.20326

    Article  Google Scholar 

  7. Langs, G., Lashkari, D., Sweet, A., Tie, Y., Rigolo, L., Golby, A.J., Golland, P.: Learning an Atlas of a Cognitive Process in Its Functional Geometry. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 135–146. Springer, Heidelberg (2011), http://dl.acm.org/citation.cfm?id=2029686.2029700

    Chapter  Google Scholar 

  8. Meyer, F.: Learning and predicting brain dynamics from fMRI: a spectral approach. In: Wavelet XII Conference. Proceedings of SPIE, vol. 6701 (2007)

    Google Scholar 

  9. Murawski, C.: Neuroeconomics: Investigating the neurobiology of choice. Australian Economic Review 44(2), 215–224 (2011), http://dx.doi.org/10.1111/j.1467-8462.2011.00638.x

    Article  Google Scholar 

  10. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  11. Song, Y., Zhang, C., Lee, J.: Graph based multi-class semi-supervised learning using gaussian process (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hansen, T.J., Hansen, L.K., Madsen, K.H. (2012). Decoding Complex Cognitive States Online by Manifold Regularization in Real-Time fMRI. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34713-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34712-2

  • Online ISBN: 978-3-642-34713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics