Skip to main content

Motion Planning with Discrete Abstractions and Physics-Based Game Engines

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7660))

Abstract

To increase automation in game design, this paper proposes a sampling-based motion-planning approach that works in conjunction with physics-based game engines. The approach automatically computes a sequence of motions that enables a virtual agent to reach a desired destination while avoiding collisions. The use of physics-based engines as the underlying simulator results in physically-realistic motions that take into account the motion dynamics, friction, gravity, and other forces interacting with the virtual agent. To account for the increased complexity and achieve computational efficiency, the approach expands a motion tree from the initial state to the goal using discrete abstractions as a guide in a best-first search fashion. Parametrized motion controllers are combined with randomized sampling to enable the motion planner to expand the motion tree along different directions. Comparisons to related work show significant computational speedups.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. International Journal of Robotics Research 20(5), 378–400 (2001)

    Article  Google Scholar 

  2. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press (2005)

    Google Scholar 

  3. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  4. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. International Journal of Robotics Research 21(3), 233–255 (2002)

    Article  Google Scholar 

  5. Jaillet, L., Cortes, J., Simeon, T.: Transition-based RRT for path planning in continuous cost spaces. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 2145–2150 (2008)

    Google Scholar 

  6. Dalibard, S., Laumond, J.-P.: Control of Probabilistic Diffusion in Motion Planning. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds.) Algorithmic Foundation of Robotics VIII. STAR, vol. 57, pp. 467–481. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Gonzalez-Banos, H.H., Hsu, D., Latombe, J.C.: Motion planning: Recent developments. Autonomous Mobile Robots: Sensing, Control, Decision-Making and Applications. CRC Press (2006)

    Google Scholar 

  8. Berenson, D., Srinivasa, S., Ferguson, D., Romea, A.C., Kuffner, J.: Manipulation planning with workspace goal regions. In: IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 618–624 (2009)

    Google Scholar 

  9. Ladd, A.M., Kavraki, L.E.: Motion planning in the presence of drift, underactuation and discrete system changes. In: Robotics: Science and Systems, Boston, MA, pp. 233–241 (2005)

    Google Scholar 

  10. Sánchez, G., Latombe, J.C.: On delaying collision checking in PRM planning: Application to multi-robot coordination. International Journal of Robotics Research 21(1), 5–26 (2002)

    Article  Google Scholar 

  11. Burns, B., Brock, O.: Single-query motion planning with utility-guided random trees. In: IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 3307–3312 (2007)

    Google Scholar 

  12. Sucan, I., Kavraki, L.: A sampling-based tree planner for systems with complex dynamics. IEEE Transactions on Robotics (99), 1–16 (2012)

    Google Scholar 

  13. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Motion planning with dynamics by a synergistic combination of layers of planning. IEEE Transactions on Robotics 26(3), 469–482 (2010)

    Article  Google Scholar 

  14. Likhachev, M., Stentz, A.: R* search. In: Conference on Artificial Intelligence, AAAI, pp. 344–350 (2008)

    Google Scholar 

  15. Coumans, E.: Bullet physics engine

    Google Scholar 

  16. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.H.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer (2008)

    Google Scholar 

  17. Ladd, A.M.: Motion Planning for Physical Simulation. PhD thesis, Rice University, Houston, TX (2006)

    Google Scholar 

  18. Kuaranes, T.: Ogre wrapper for bullet physics engine

    Google Scholar 

  19. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: Interantional Conference on Machince Learning, Pittsburgh, Pennsylvania, pp. 97–104 (2006)

    Google Scholar 

  20. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research 30(7), 846–894 (2011)

    Article  Google Scholar 

  21. Plaku, E., Hager, G.D.: Sampling-based motion and symbolic action planning with geometric and differential constraints. In: IEEE International Conference on Robotics and Automation, Anchorage, AK, pp. 5002–5008 (2010)

    Google Scholar 

  22. Plaku, E.: Planning in Discrete and Continuous Spaces: From LTL Tasks to Robot Motions. In: Herrmann, G., Studley, M., Pearson, M., Conn, A., Melhuish, C., Witkowski, M., Kim, J.-H., Vadakkepat, P. (eds.) FIRA-TAROS 2012. LNCS (LNAI), vol. 7429, pp. 331–342. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plaku, E. (2012). Motion Planning with Discrete Abstractions and Physics-Based Game Engines. In: Kallmann, M., Bekris, K. (eds) Motion in Games. MIG 2012. Lecture Notes in Computer Science, vol 7660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34710-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34710-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34709-2

  • Online ISBN: 978-3-642-34710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics