Querying Parametric Temporal Logic Properties on Embedded Systems

  • Hengyi Yang
  • Bardh Hoxha
  • Georgios Fainekos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7641)


In Model Based Development (MBD) of embedded systems, it is often desirable to not only verify/falsify certain formal system specifications, but also to automatically explore the properties that the system satisfies. Namely, given a parametric specification, we would like to automatically infer the ranges of parameters for which the property holds/does not hold on the system. In this paper, we consider parametric specifications in Metric Temporal Logic (MTL). Using robust semantics for MTL, the parameter estimation problem can be converted into an optimization problem which can be solved by utilizing stochastic optimization methods. The framework is demonstrated on some examples from the literature.


Hybrid System Temporal Logic Atomic Proposition Parameter Estimation Problem Shift Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lions, J.L., Lbeck, L., Fauquembergue, J.L., Kahn, G., Kubbat, W., Levedag, S., Mazzini, L., Merle, D., O’Halloran, C.: Ariane 5, flight 501 failure, report by the inquiry board. Technical report, CNES (1996)Google Scholar
  2. 2.
    Hoffman, E.J., Ebert, W.L., Femiano, M.D., Freeman, H.R., Gay, C.J., Jones, C.P., Luers, P.J., Palmer, J.G.: The near rendezvous burn anomaly of december 1998. Technical report, Applied Physics Laboratory, Johns Hopkins University (1999)Google Scholar
  3. 3.
    Tripakis, S., Dang, T.: Modeling, Verification and Testing using Timed and Hybrid Automata. In: Model-Based Design for Embedded Systems, pp. 383–436. CRC Press (2009)Google Scholar
  4. 4.
    Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas, G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems. In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 211–220. ACM Press (2010)Google Scholar
  5. 5.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2, 255–299 (1990)CrossRefGoogle Scholar
  6. 6.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science 410, 4262–4291 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid systems using the cross-entropy method. In: ACM International Conference on Hybrid Systems: Computation and Control (2012)Google Scholar
  8. 8.
    Annapureddy, Y.S.R., Fainekos, G.E.: Ant colonies for temporal logic falsification of hybrid systems. In: Proceedings of the 36th Annual Conference of IEEE Industrial Electronics, pp. 91–96 (2010)Google Scholar
  9. 9.
    Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric Identification of Temporal Properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 147–160. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Annapureddy, Y.S.R., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Chutinan, A., Butts, K.R.: Dynamic analysis of hybrid system models for design validation. Technical report, Ford Motor Company (2002)Google Scholar
  12. 12.
    Abbas, H., Fainekos, G.E., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Probabilistic temporal logic falsification of cyber-physical systems. ACM Transactions on Embedded Computing Systems (2011) (in press)Google Scholar
  13. 13.
    Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity and Expressiveness. In: Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 390–401. IEEE Computer Society Press, Washington, D.C (1990)CrossRefGoogle Scholar
  14. 14.
    Zhao, Q., Krogh, B.H., Hubbard, P.: Generating test inputs for embedded control systems. IEEE Control Systems Magazine, 49–57 (August 2003)Google Scholar
  15. 15.
    Fainekos, G., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automotive control applications using s-taliro. In: Proceedings of the American Control Conference (2012)Google Scholar
  16. 16.
    Donze, A., Maler, O.: Robust Satisfaction of Temporal Logic over Real-Valued Signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Silva, B.I., Krogh, B.H.: Formal verification of hybrid systems using CheckMate: a case study. In: Proceedings of the American Control Conference, vol. 3, pp. 1679–1683 (2000)Google Scholar
  18. 18.
    Conrad, M., Fey, I.: Testing automotive control software. In: Automotive Embedded Systems Handbook. CRC Press (2008)Google Scholar
  19. 19.
    Koopman, P.: Better Embedded System Software. Drumnadrochit Education LLC (2010)Google Scholar
  20. 20.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL Safety Properties in Hybrid Systems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 368–382. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for hybrid embedded systems. In: Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, pp. 487–492 (2004)Google Scholar
  22. 22.
    Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to simulink/stateflow verification. In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 243–252 (2010)Google Scholar
  23. 23.
    Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for model measuring. ACM Trans. Comput. Logic 2, 388–407 (2001)zbMATHCrossRefGoogle Scholar
  24. 24.
    Di Giampaolo, B., La Torre, S., Napoli, M.: Parametric Metric Interval Temporal Logic. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 249–260. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Fages, F., Rizk, A.: On temporal logic constraint solving for analyzing numerical data time series. Theor. Comput. Sci. 408, 55–65 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: On a Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications to Systems Biology. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Chan, W.: Temporal-Logic Queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  28. 28.
    Chechik, M., Gurfinkel, A.: TLQSolver: A Temporal Logic Query Checker. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 210–214. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Hengyi Yang
    • 1
  • Bardh Hoxha
    • 1
  • Georgios Fainekos
    • 1
  1. 1.School of Computing, Informatics and Decision Systems EngineeringArizona State UniversityU.S.A

Personalised recommendations