Skip to main content

Die Entstehung unseres Sonnensystems

  • Chapter
  • First Online:
Mineralogie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 16k Accesses

Zusammenfassung

Bevor wir uns der Frage zuwenden, welche Prozesse zur Entstehung unseres Sonnensystems geführt haben, müssen wir uns zunächst einige grundlegende Tatsachen ins Gedächtnis rufen (Unsöld u. Baschek 2005; Chambers 2005; Weigert et al. 2005):

  1. 1.

    Die Bahnen der Planeten sind nahezu kreisförmig und koplanar; sie besitzen den gleichen Umlaufsinn, der mit dem der Sonne übereinstimmt. Nach der Regel von Titius-Bode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

Lehrbücher und Sammelbände

  • Faure G, Mensing TM (2007) Introduction to planetary science – The geological perspective. Springer-Verlag, Dordrecht, Niederlande

    Google Scholar 

  • Garcia PJ (ed) (2009) Physical processes in circumstellar disks around young stars. Chicago Univ Press, Chicago

    Google Scholar 

  • Henning Th (ed) (2003) Astromineralogy. Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  • Rollinson H (2007) Early Earth systems – A geochemical approach. Blackwell, Malden, Ma, USA

    Google Scholar 

  • Unsöld A, Baschek B (2005) Der neue Kosmos, 7. Aufl. Korrigierter Nachdruck, Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Weigert A, Wendger H, Wisotzki L (2005) Astronomie und Astrophysik – Ein Grundkurs. 4. Aufl, Wiley-VCH, Weinheim

    Google Scholar 

Übersichtsartikel

  • Carr MH (1999) Mars. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge University Press, Cambridge UK, pp 141–156

    Google Scholar 

  • Chambers JE (2005) Planet formation. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Amsterdam Oxford, pp 461–474

    Google Scholar 

  • Counelle M (2011) The asteroid–comet continuum: In search of lost primitivity. Elements 7:29–34

    Article  Google Scholar 

  • Davis AM, Richter FM (2005) Condensation and evaporation of solar system materials. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Amsterdam Oxford, pp 407–430

    Google Scholar 

  • Fiquet G, Guyot F, Badro J (2008) The Earth’s lower mantle and core. Elements 4:177–182

    Article  Google Scholar 

  • Henning Th (2008) Early phases of planet formation in protoplanetary disks. Physica Scripta 130:014019

    Article  Google Scholar 

  • Henning Th, Meeus G (2009) Dust processing and mineralogy in protoplanetary accretion disks. In: Garcia PJV (ed) Physical processes in circumstellar disks around young stars. Chicago Univ Press, Chicago, pp 114–148

    Google Scholar 

  • Jones AP (2007) The mineralogy of cosmic dust: Astromineralogy. Eur J Mineral 19:771–782

    Article  Google Scholar 

  • Kleine T, Rudge JF (2011) Chronometry of meteorites and the formation of Earth and Moon. Elements 7:41–46

    Article  Google Scholar 

  • Lunine JI (2005) Giant planets. In: Davis AM (ed) Meteorites, comets and planets. Elsevier Amsterdam Oxford, pp 623–636

    Google Scholar 

  • Newsom HE, Jones JH (1990) Origin of the Earth. Oxford University Press, Oxford

    Google Scholar 

  • Nguen AN, Messenger S (2011) Presolar history recorded in extraterrestrial materials. Elements 7:17–22

    Article  Google Scholar 

  • Scott ERD, Krot AN (2005) Chondrites and their components. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Amsterdam Oxford, pp 143–200

    Google Scholar 

  • Wetherill GW (1990) Formation of the Earth. Ann Rev Earth Planet Sci 18:205–256

    Article  Google Scholar 

  • Wood JA (1999) Origin of the solar system. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833

    Article  Google Scholar 

  • Zinner EK (2005) Presolar grains. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Amsterdam Oxford, pp 17–39

    Google Scholar 

Zitierte Literatur

  • Amelin Y, Krot AN, Hutcheon ID, Ulyanov AA (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297:1678–1683

    Article  Google Scholar 

  • Bennett CL und 20 weitere Autoren (2003) First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and their basic results. Astrophys J Suppl 148:1–27

    Google Scholar 

  • Bouvier A, Wadwha M, Janney P (2008) Pb-Pb isotope systematics in an Allende chondrule. Geochim Cosmochim Acta 72:A106

    Google Scholar 

  • Fagan TJ, Krot AN, Keil K, Yurimoto H (2004) Oxygen isotopic evolution of amoeboid olivine aggregates in the reduced CV chondrites Efremovka, Vigarano and Leoville. Geochim Cosmochim Acta 68:2591–2611

    Article  Google Scholar 

  • Kleine T, Mezger K, Palme H, et al. (2005a) Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf –182W in CAIs, metal-rich chondrites, and iron meteorites. Geochim Cosmochim Acta 69:5805–5818

    Article  Google Scholar 

  • Kleine T, Palme H, Mezger K, Halliday AN (2005b) Hf-W chronometry of lunar metals and the age of early differentiation of the moon. Science 310:1671–1674

    Article  Google Scholar 

  • Kleine T, Burckhardt C, Bourdon B, Irving A (2008) Calibrating the hafnium-tungsten and aluminium-magnesium clocks. 86th Ann Meeting DMG, 14–16 Sept 2008, Berlin, Abstr 403 Lissauer JJ (2002) Extrasolar planets. Nature 419:355–358

    Google Scholar 

  • Shearer CK, Papike JJ (1999) Magmatic evolution of the Moon. Am Mineral 84:1469–1494

    Google Scholar 

  • Shukolyukov A, Lugmair GW (1993) Live iron –60 in the early solar system. Science 259:1348–1350

    Article  Google Scholar 

  • Wänke H, Dreibus G (1988) Chemical composition and accretion history of the terrestrial planets. Phil Trans Roy Soc London A325:545–557

    Google Scholar 

  • Weidenschilling SJ, Spaute D, Davis DR, et al. (1997) Accretional evolution of a planetsimal swarm. Icarus 128:429–455

    Article  Google Scholar 

  • Wadwha M, Russell SS (2000) Timescales of accretion and differentiation in the early solar system: The meteoritic evidence. In: Mannings V, Boss AP, Russell SS (eds) Protostars and planets IV. Univ Arizona Press, Tucson, Arizona, pp 995–1018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Okrusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okrusch, M., Matthes, S. (2014). Die Entstehung unseres Sonnensystems. In: Mineralogie. Springer-Lehrbuch. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34660-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34660-6_34

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34659-0

  • Online ISBN: 978-3-642-34660-6

  • eBook Packages: Life Science and Basic Disciplines (German Language)

Publish with us

Policies and ethics