Skip to main content

Einführung in die Geochemie

  • Chapter
  • First Online:
Mineralogie

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Bei der Lektüre dieses Buches ist dem aufmerksamen Leser klar geworden, dass die Verteilung der chemischen Elemente in der Natur wesentlich durch gesteinsbildende Prozesse kontrolliert wird. Bereits im frühen Entwicklungsstadium unseres Sonnensystems differenzieren sich die erdähnlichen Planeten, die ursprünglich chondritische Zusammensetzung hatten, in einen metallischen Kern und einen silikatischen Mantel. Krustenbildende Prozesse werden durch partielle Aufschmelzung im Mantel ausgelöst. Dabei entstehen Stamm-Magmen, in denen die inkompatiblen Elemente in verschiedenem Maße angereichert werden. Fraktionierte Kristallisation dieser Magmen, häufig kombiniert mit Assimilation von Nebengestein, führt zur Bildung magmatischer Serien von unterschiedlichem geochemischen Charakter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

Weiterführende Literatur

  • Barnes HL (ed) (1997) Geochemistry of hydrothermal ore deposits, 3rd ed. Wiley, New York

    Google Scholar 

  • Bennett CL und 20 weitere Autoren (2003) First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and their basic results. Astrophys J Suppl 148:1–27

    Google Scholar 

  • Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Uranium-series geochemistry. Rev Mineral Geochem 50

    Google Scholar 

  • Brown GC, Mussett AE (1981, 1993) The inaccessible Earth, 1st and 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Burns PC, Finch R (eds) (1999) Uranium: mineralogy, geochemistry and the environment. Rev Mineral Geochem 52

    Google Scholar 

  • De Paolo DJ (1988) Neodymium isotope geochemistry: An introduction. Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  • Dickin AP (1997) Radiogenic isotope geology, 2nd edn. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, New York

    Google Scholar 

  • Frebel A (2010) Aus der Kinderzeit unserer Galaxis. Was metallarme Sterne über die Geburt des Milchstraßensystems verraten. Sterne und Weltraum 7/2010:30–39

    Google Scholar 

  • Gill RCO (1993) Chemische Grundlagen der Geowissenschaften. Enke, Stuttgart (Übersetzung der engl. Originalausgabe)

    Google Scholar 

  • Goldschmidt VM (1954) Geochemistry. Clarendon Press, Oxford

    Google Scholar 

  • Grew ES (ed) (2002) Beryllium – Mineralogy, petrology, geochemistry. Rev Mineral Geochem 50

    Google Scholar 

  • Grew ES, Anovitz LM (ed) (1996) Boron – Mineralogy, petrology and geochemistry. Rev Mineral 33

    Google Scholar 

  • Harley SL, Kelly NM (2007) Zircon – Tiny but timely. Elements 3: 13–18

    Article  Google Scholar 

  • Hoefs J (2004) Stable isotope geochemistry, 5th ed. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Jäger E, Hunziker JC (eds) (1977) Lectures in isotope geology. Springer- Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Johnson CM, Beard BL, Albarède F (eds) (2004) Geochemistry of non-traditional stable isotopes. New views of the Moon. Rev Mineral Geochem 55

    Google Scholar 

  • Klein M (2005) Geochemistry of the igneous oceanic crust. In: Rudnick RL (ed) The Crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry 3. Elsevier, Amsterdam, pp 433–463

    Google Scholar 

  • Kleine T, Rudge JF (2011) Chronometry of meteorites and the formation of Earth and Moon. Elements 7:41–46

    Article  Google Scholar 

  • Krauskopf KB (1979) Introduction to geochemistry, 2nd edn. MacGraw-Hill, New York

    Google Scholar 

  • Lauretta DS (2011) A cosmochemical view of the solar system. Elements 7:11–16

    Article  Google Scholar 

  • Mason B, Moore CB (1982) Principles of geochemistry, 4rd edn. Wiley, New York London Sydney

    Google Scholar 

  • Mason B, Moore CB (1985) Grundzüge der Geochemie. Enke, Stuttgart (Übersetzung der 4. engl. Aufl, 1982)

    Google Scholar 

  • McDonough WF, Sun S-S (1995) Composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Palme H, Jones A (2005) Solar system abundances of the elements. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Amsterdam Oxford, pp 41–61

    Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the Earth’s mantle. McGraw-Hill, New York

    Google Scholar 

  • Rollinson H (1993) Using geochemical data: Evaluation, presentation, interpretation. Longman, Harlow, Essex, UK

    Google Scholar 

  • Rollinson H (2007) Early Earth systems. A geochemical approach. Blackwell, Malden, MA, USA

    Google Scholar 

  • Rösler HJ, Lange H (1972) Geochemical tables. Edition Leipzig, Leipzig

    Google Scholar 

  • Rudnick RL, Gao S (2005) Composition of the continental crust. In: Rudnick RL (ed) The Crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry 3. Elsevier, Amsterdam, pp 1–65

    Google Scholar 

  • Schatz H (2010) The evolution of elements and isotopes. Elements 6:13–17

    Article  Google Scholar 

  • Scherer EE, Whitehouse MJ, Münker C (2007) Zircon as a monitor of crustal growth. Elements 3:19–24

    Article  Google Scholar 

  • Truran JW Jr, Heger A (2005) Origin of the elements. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Amsterdam Oxford, pp 1–15

    Google Scholar 

  • Unsöld A, Baschek B (2005) Der neue Kosmos, 7. Aufl. Korrigierter Nachdruck, Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Valley JM, Cole DR (ed) (2001) Stable isotope geochemistry. Rev Mineral Geochem 43

    Google Scholar 

  • Valley JW, Taylor HP Jr, O’Neil JR (eds) (1986) Stable isotopes and high temperature geological processes. Rev Mineral 16

    Google Scholar 

  • Wedepohl KH (ed.) (1969–1978) Handbook of geochemistry, vol I, II –1, II –2, II –3, II –4. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Weigert A, Wendger H, Wisotzki L (2005) Astronomie und Astrophysik – Ein Grundkurs, 4. Aufl, Wiley-VCH, Weinheim

    Google Scholar 

  • Weinberg S (1977) Die ersten drei Minuten – Der Ursprung des Universums. Piper, München

    Google Scholar 

  • White WM (2007) Geochemistry. An online textbook to be published by John-Hopkins University Press

    Google Scholar 

  • Wilson M (1988) Igneous petrogenesis – A global tectonic approach. Harper Collins, London

    Google Scholar 

Zitierte Literatur

  • Allègre C-J, Poirier J-P, Humler E, Hofmann AW (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134: 515–526

    Article  Google Scholar 

  • Bluth GL, Ohmoto H (1988) Sulfide-sulfate chimneys on the East Pacific Rise, 11° and 13°N latitudes. Part II: Sulfur isotopes. Can Mineral 26:505–515

    Google Scholar 

  • Bowrings SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134:3–16

    Article  Google Scholar 

  • Boynton WV (1984) Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Cissarz A (1965) Einführung in die allgemeine und systematische Lagerstättenlehre, 2. Aufl. Schweizerbart, Stuttgart

    Google Scholar 

  • Clarke FW (1924) The data of geochemistry, 5th edn. US Geol Surv Bull 770

    Google Scholar 

  • Compston W, William IS, Meyer C (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high massresolution ion microprobe. Proc 14th Lunar Planet Sci Conf. J Geophys Res 89 (Suppl):B525–B534

    Google Scholar 

  • Christensen PR, et al. (2004) Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science 306:1733–1739

    Article  Google Scholar 

  • Dombrowski A, Henjes-Kunst F, Höhndorf A, et al. (1995) Orthogneisses in the Spessart Crystalline Complex, north-west Bavaria: Silurian granitoid magmatism at an active continental margin. Geol Rundschau 84:399–411

    Article  Google Scholar 

  • Eldridge CS, Compston W, Williams IS, et al. (1988) Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined with the ion-microprobe, SHRIMP: I. An example from the Rammelsberg orebody. Econ Geol 83:443–449

    Article  Google Scholar 

  • Frimmel HE (2008) Earth’s continental gold endowment. Earth Planet Sci Lett 267:45–55

    Article  Google Scholar 

  • Ganapathy R, Anders E (1974) Bulk composition of the moon and earth, estimated from meteorites. Proc 5th Lunar Sci Conf 2:1181–1206 (Geochim Cosmochim Acta Suppl 5)

    Google Scholar 

  • Goldschmidt VM (1933) Grundlagen der quantitativen Geochemie. Fortschr Mineral Krist 17:112–156

    Google Scholar 

  • Green TH (1980) Island arc and continent-building magmatism: A review of petrogenetic models based on experimental petrology and geochemistry. Tectonophysics 63:367–385

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: The message from oceanic volcanism. Nature 385:221–229

    Article  Google Scholar 

  • Javoy M (1999) Chemical Earth models. CR Acad Sci Paris, Earth Planet Sci 329:537–555

    Google Scholar 

  • Nicolaysen LO (1961) Graphic interpretation of discordant age measurements on metamorphic rocks. Ann NY Acad Sci 91: 198–206

    Article  Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 509–567

    Google Scholar 

  • Pauling L (1959) The nature of the chemical bond, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Pearce JA (1983) The role of sub-continental lithosphere in magma genesis at destructive plate boundaries. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, Cheshire, UK, pp 230–249

    Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett 19:290–300

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Poirier J-P (1994) Light elements in the Earth’s outer core: a critical review. Phys Earth Planet Sci Int 85:383–427

    Google Scholar 

  • Ringwood AE (1966) The chemical composition and origin of the earth. In: Hurley PM (ed) Advances in earth sciences. MIT Press, Cambridge, Mass, pp 287–356

    Google Scholar 

  • Ronov AB, Yaroshevky AA (1969) Chemical composition of the Earth’s crust. In: Hart PJ (ed) The Earth’s crust and upper mantle. Am Geol Union, pp 37–57

    Google Scholar 

  • Rutherford E, Soddy F (1903) Radioactive change. Phil Mag 6: 576–591

    Google Scholar 

  • Schidlowski M (1988) A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318

    Article  Google Scholar 

  • Schüssler U, Henjes-Kunst F, Talarico F, Flöttmann T (2004) High-grade crystalline basement of the northwestern Wilson Terrane at Oates Coast: New petrological and geochronological data and implications for its tectonometamorphic evolution. Terra Antartica 11:15–34

    Google Scholar 

  • Shervais JW (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Article  Google Scholar 

  • Spohn T (1991) Mantle differentiation and thermal evolution of Mars, Mercury and Venus. Icarus 90:222–236

    Article  Google Scholar 

  • Sun S-S (1980) Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Phil Trans R Soc London A297:409–445

    Google Scholar 

  • Thompson RN, Morrison MA, Hendry GL, Parry SJ (1984) An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Phil Trans R Soc London A310: 549–590

    Google Scholar 

  • Wedepohl KH (1994) The composition of the continental crust. Mineral Mag 58A:959–960

    Article  Google Scholar 

  • Whittacker EJW, Muntus R (1970) Ionic radii for use in geochemistry. Geochim Cosmochim Acta 34:945–956

    Article  Google Scholar 

  • Zeh A, Gerdes A, Millonig L (2011) Hafnium isotope record of the Ancient Gneiss Complex, Swaziland, southern Africa: Evidence for Archean crust–mantle formation and crust reworking between 3.66 and 2.73 Ga. J Geol Soc, London 168:953–963

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Okrusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okrusch, M., Matthes, S. (2014). Einführung in die Geochemie. In: Mineralogie. Springer-Lehrbuch. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34660-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34660-6_33

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34659-0

  • Online ISBN: 978-3-642-34660-6

  • eBook Packages: Life Science and Basic Disciplines (German Language)

Publish with us

Policies and ethics