Skip to main content

Meteorite

  • Chapter
  • First Online:
Mineralogie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 16k Accesses

Zusammenfassung

Meteorite sind Bruchstücke extraterrestrischer Körper, die den Flug durch die Erdatmosphäre überleben und auf der Erdoberfläche aufschlagen. Die meisten Meteorite unterscheiden sich in ihrem Gefüge von irdischen Gesteinen. Wichtige Meteoriten-Minerale kommen auch auf der Erde häufig vor, andere dagegen sind hier unbekannt. Bisher wurden in Meteoriten keine chemischen Elemente nachgewiesen, die es nicht auch auf der Erde gibt. Allerdings weisen Meteorite oft höhere Gehalte an Nickel sowie an den Platinmetallen Ir, Os und Rh auf und führen neben oxidiertem Eisen, das insbesondere in den Silikat-Mineralen gebunden ist, metallisches Eisen in Form von Fe-Ni-Legierungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

Lehrbücher und Sammelbände

  • Buchwald VF (1975) Handbook of iron meteorites. Their history, distribution, composition and structure. University of California Press, Berkeley Los Angeles London

    Google Scholar 

  • Davis AM (ed) (2005) Meteorites, comets, and planets. Treatise in Geochemistry 1. Elsevier, Oxford UK

    Google Scholar 

  • Grady MM (2000) Catalogue of meteorites, 4th ed. The Natural History Museum London, UK

    Google Scholar 

  • Heide F, Wlotzka F (1988) Kleine Meteoritenkunde, 3. Aufl. Springer- Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Kleinschrot D (2003) Meteorite – Steine, die vom Himmel fallen. Beringeria, Sonderheft 4, 89 pp, Würzburg

    Google Scholar 

  • Lipschutz ME, Schultz L (1998) Meteorites. In Weissman P, McFadden L-A, Johnson T (eds) The Encyclopedia of the Solar System. Academic Press, San Diego, pp 629–671

    Google Scholar 

  • Norton OR (2002) The Cambridge Encyclopedia of meteorites. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Norton O, Chitwood LA (2008) Field guide to meteors and meteorites. Springer-Verlag, London

    Book  Google Scholar 

  • Papike JJ (ed) (1998) Planetary materials. Rev Mineral 36

    Google Scholar 

  • Rollinson H (2007) Early Earth systems. A geochemical approach. Blackwell, Malden, MA, USA

    Google Scholar 

  • Unsöld A, Baschek B (2005) Der neue Kosmos, 7. Aufl, 1. Korrigierter Nachdruck. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Wasson JT (1985) Meteorites. Their record of early solar system history. Freeman, New York

    Google Scholar 

Übersichtsartikel

  • Bogard DD (2011) K-Ar ages of meteorites: Clues to parent body thermal histories. Chem Erde 71:207–226

    Article  Google Scholar 

  • Gilmour I (Structural and isotopic analysis of organic matter in carbonaceous chondrites. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Oxford UK, pp 269–290

    Google Scholar 

  • Glass BP, Simonson BM (2012) Distal impact ejecta layers: Spherules and more. Elements 8:43–48

    Article  Google Scholar 

  • Goldstein JI, Scott ERD, Chabot NL (2009) Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chem Erde 69:293–325

    Article  Google Scholar 

  • Jourdan F, Reimold WU, Deutsch A (2012) Dating terrestrial impact structures. Elements 8:49–53

    Article  Google Scholar 

  • Keil K (2012) Angrites, a small but diverse suite of ancient, silicaundersaturated volcanic- plutonic mafic meteorites, and the history of their parent asteroid. Chem Erde 72:191–218

    Article  Google Scholar 

  • Kleine T, Rudge JF (2011) Chronometry of meteorites and the formation of Earth and Moon. Elements 7:41–46

    Article  Google Scholar 

  • Koeberl C, Claeys P, Hecht L, McDonald I (2012) Geochemistry of impactites. Elements 8:37–42

    Article  Google Scholar 

  • Krot AN, Keil K, Goodrich CA, Scott ERD, Weisberg MK (2005) Classification of meteorites. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Oxford UK, pp 83–128

    Google Scholar 

  • MacPershon GJ (2005) Calcium – aluminum-rich inclusions in chondritic meteorites. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Oxford UK, pp 201–246

    Google Scholar 

  • Martins Z (2011) Organic chemistry of carbonaceous meteorites. Elements 7:35–40

    Article  Google Scholar 

  • McCoy TJ (2010) Mineralogical evolution of meteorites. Elements 6:19–23

    Article  Google Scholar 

  • Pierazzo E, Artemieva N (2012) Local and global environmental effects of impacts on Earth. Elements 8:55–60

    Article  Google Scholar 

  • Reimold WU, Jourdan F (2012) Impact! – Bolides, craters and catastrophes. Elements 8:19–24

    Article  Google Scholar 

  • Scott ERD, Krot AN (2005) Chondrites and their components. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Oxford, pp 144–200

    Google Scholar 

  • Zanda B (2004) Chondrules. Earth Planet Sci Lett 224:1–17

    Article  Google Scholar 

Zitierte Literatur

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Creataceous Tertiary extinction. Science 208: 1095–1108

    Article  Google Scholar 

  • Amelin Y (2008) U-Pb ages of angrites. Geochim Cosmochim Acta 72:221–232

    Article  Google Scholar 

  • Amelin Y, Krot AN, Hutcheon ID, Ulyanov AA (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297:1678–1683

    Article  Google Scholar 

  • Baziotis IP, Liu Y, DeCarli PS et al. (2013) The Tissint Martian meteorite as evidence for the largest impact excavation. Nature, Comm/4:1404

    Google Scholar 

  • Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science 291:1530–1533

    Article  Google Scholar 

  • Bischoff A (2001) Meteorite classification and the definition of new chondrite classes as a result of recent meteorite search expeditions in hot and cold deserts. Planet Space Sci 49:769–776

    Article  Google Scholar 

  • Bischoff A, Keil K (1983) Ca-Al-rich chondrules and inclusions in ordinary chondrites. Nature 303:588–592

    Article  Google Scholar 

  • Bischoff A, Horstmann M, Vollmer C, et al. (2013) Chelyabinsk – not only another ordinary LL5 chondrite, but a spectacular chondrite breccia. Meteoritics (in press)

    Google Scholar 

  • Borg LE, Edmunson J, Asmerom Y (2005) Constraints on the U-Pb systematics of Mars inferred from a combined U-Pb, Rb-Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami. Geochim Cosmochim Acta 69:5819–5830

    Article  Google Scholar 

  • Bouvier A, Wadhwa M, Janney P (2008) Pb-Pb isotope systematics in an Allende chondrule. Geochim Cosmochim Acta 72:A106

    Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneises from northwestern Canada. Contrib Mineral Petrol 134:3–16

    Article  Google Scholar 

  • Buchner E, Seyfried H, van den Bogaard P (2003) 40Ar/39Ar laser probe age determination confirms the Ries impact crater as the source of glass particles in Graupensand sediments (Grimmelfinger Formation, North Alpine Foreland Basin). Int J Earth Sci 92:1–6

    Google Scholar 

  • Cheng M, El Goresy A, Gillet P (2004) Ringwoodite lamellae in olivine: Clues to olivine-ringwoodite phase transition mechanisms in shocked meteorites and subducted slabs. PNAS Proc Nat Acad Sci USA 101:15033–15037

    Article  Google Scholar 

  • Consolmagno GJ, Britt DT, Macke RJ (2008) The significance of meteorite density and porosity. Chem Erde 68:1–29

    Article  Google Scholar 

  • El Goresy A, Dera P, Sharp TG, et al. (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur J Mineral 20:523–528

    Article  Google Scholar 

  • Gentner W, Lippolt HJ, Schaefer OA (1961) Das Kalium-Argon-Alter der Gläser des Nördlinger Rieses und der böhmisch-mährischen Tektite. Geochim Cosmochim Acta 27:191–200

    Article  Google Scholar 

  • Goldstein JI, Axon HJ (1973) The Widmannstätten figure in iron meteorites. Naturwissenschaften 60:313–321

    Article  Google Scholar 

  • Gooding JL, Keil K (1981) Relative abundances of chondrule primary textural types and their bearing on conditions of chondrule formation. Meteoritics 16:17–43

    Article  Google Scholar 

  • Grady MM (1999) Meteorites from cold and hot deserts: How many, how big, and what sort? Workshop on Extraterrestrial Materials from Cold and Hot Deserts. Kwa-Maritane, Pilanesberg, South Africa

    Google Scholar 

  • Heinlein D (2002) Meteoritenfall in den bayerischen Alpen. Sterne und Weltraum 2002, Heft 6:66–67

    Google Scholar 

  • Hildebrandt AR, Penfield GT, Kring DA, et al. (1991) Chicxulub Crater; A possible Cretaceous/Tertiary boundary impact crater in the Yucatán Peninsula, Mexico. Geology 19:867–871

    Article  Google Scholar 

  • Jagoutz E, Wänke H (1986) Sr and Nd systematics of Shergotty meteorite. Geochim Cosmochim Acta 50:939–953

    Article  Google Scholar 

  • Kenkmann T, Artemieva NA, Poelchau MH (2008) The Carancas event of September 15, 2007: Meteorite fall, impact conditions, and crater characteristics. Lunar Planet Sci 39:1094.pdf

    Google Scholar 

  • Kleine T, Mezger K, Palme H, et al. (2005) Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf –182W in CAIs, metal-rich chondrites, and iron meteorites. Geochim Cosmochim Acta 69:5805–5818

    Article  Google Scholar 

  • Krot AN, Petaev MI, Keil K (2005) Mineralogy and petrology of Alrich objects and amoeboid olivine aggregates in the CH carbonaceous chondrite North West Africa 739. Chem Erde 66:57–76

    Article  Google Scholar 

  • Krot AN, Ivanova MA, Ulyanov AA (2007) Chondrules in the CB/ CH-like carbonaceous chondrite Isheyevo: Evidence for various chondrule-forming mechanisms and multiple chondrule generations. Chem Erde 67:283–300

    Article  Google Scholar 

  • Laurenci A, Bigazzi G, Balestrieri ML, Bouška W (2003) 40Ar/39Ar laser probe dating of the Central European tektite-producing impact event. Meteoritics 38:887–893

    Article  Google Scholar 

  • Meibom A, Clark BE (1999) Evidence for the insignificance of ordinary chondritic material in the asteroidal belt. Meteoritics 34:7–24

    Article  Google Scholar 

  • Metzler K, Bischoff A, Stöffler D (1992) Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes. Geochim Cosmochim Acta 56:2873–2897

    Article  Google Scholar 

  • Misawa K, Yamagichi A, Kaiden H (2005) U-Pb and 207Pb –206Pb-ages of zircons from basaltic eucrites: Implications for early basaltic volcanism on the eucrite parent body. Geochim Cosmochim Acta 69:5847–5861

    Article  Google Scholar 

  • Oberst J, Heinlein D, Köhler U, Spurný P (2004) The multiple meteorite fall of Neuschwanstein: Circumstances of the event and meteorite search campaigns. Meteoritics 39: 1605–1626

    Article  Google Scholar 

  • Phillips FM, Zreda MG, Smith SS, et al. (1991) Age and geomorphic history of meteor crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish. Geochim Cosmochim Acta 55:2695–2698

    Article  Google Scholar 

  • Reimold U (2006) Impact structures in South Africa. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Geol Soc South Africa, Johannesburg, and Council for Geoscience, Pretoria

    Google Scholar 

  • Reimold U (2007) Revolution in the Earth sciences: Continental drift, impact and other catastrophs. South African J Geol 110:1–46

    Article  Google Scholar 

  • Reimold WU, Gibson RL (2005) Meteorite impact! The danger from the space and South Africa’s mega-impact, the Vredefort structure. Van Rensburg, Johannesburg

    Google Scholar 

  • Ringwood AE (1960) The Novo Urei meteorite. Geochim Cosmochim Acta 20:1–2

    Article  Google Scholar 

  • Schultz PH, Harris RS, Tancredi G, Ishitsuka J (2008) Implications of the Carancas meteorite impact. Lunar Planet Sci 39: 2409.pdf

    Google Scholar 

  • Schulze H, Bischoff A, Palme H, et al. (1994) Mineralogy and chemistry of Rumuruti: The first meteorite fall of the new R chondrite group. Meteoritics 29:275–286

    Article  Google Scholar 

  • Treiman AH (2005) The nakhlite meteorites: Augite-rich igneous rocks from the Mars. Chem Erde 65:203–270

    Article  Google Scholar 

  • Trieloff M, Schmitz B, Korochantseva E (2007) Kosmische Katastrophe im Erdaltertum. Sterne und Weltraum 6:28–35

    Google Scholar 

  • Tschermak G (1883) Beitrag zur Classifikation der Meteoriten. Sitzungsber Akad Wiss Wien 88 (1):347–371

    Google Scholar 

  • van Schmus WR, Wood JA (1967) A chemical-petrologic classification for the chondritic meteorites. Geochim Cosmochim Acta 31:747–765

    Article  Google Scholar 

  • von Engelhardt W, Berthold C, Wenzel T, Dehner T (2005) Chemistry, small-scale inhomogeneity, and formation of moldavites as condensates from sands vaporized by the Ries impact. Geochim Cosmochim Acta 69:5611–5626

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Okrusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okrusch, M., Matthes, S. (2014). Meteorite. In: Mineralogie. Springer-Lehrbuch. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34660-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34660-6_31

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34659-0

  • Online ISBN: 978-3-642-34660-6

  • eBook Packages: Life Science and Basic Disciplines (German Language)

Publish with us

Policies and ethics