Skip to main content

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 7430))

Abstract

An active set is a unifying space being able to act as a “bridge” for transferring information, ideas and results between distinct types of uncertainties and different types of applications. An active set is a set of agents who independently deliver true or false values for a given proposition. It is not a simple vector of logic values for different propositions, the results are a vector but the set is not. The difference between an ordinary set and active set is that the ordinary set has passive elements with values of the attributes defined by an external agent, in the active set any element is an agent that internally defines the value of a given attribute for a passive element. So agents in many cases are in a logic conflict and this generates semantic uncertainty on the evaluation. Criteria and agents are the two variables by which we give different logic values to the same attribute or proposition. In modal logic, given a proposition, we can evaluate the proposition only when we know the worlds where the proposition is located. In epistemic logic any world is an agent that knows that the proposition is true or false. The active set is a set of agents as in epistemic logic but the difference with modal logic is that all the agents (worlds) are not separate but are joined in the evaluation of the given proposition. In active set for one agent and one criteria we have one logic value but for many agents and criteria the evaluation is not true or false but is a matrix of true and false. This matrix is not only a logic evaluation as in the modal logic but give us the conflicting structure of the active set evaluation. The agent multi dimensional space to evaluate active set also includes the Hilbert multidimensional space where is possible to simulate quantum logic gate. New logic operation are possible as fuzzy gate operations and more complex operations as conflicting solving, consensus operations, syntactic inconsistency, semantic inconsistency and knowledge integration. In the space of the agents evaluations morphotronic geometric operations are a new frontier to model new types of computers. In this paper we show the connection between classical, fuzzy, evidence theory and active sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrow, K.: Social choice and individual values, 2nd edn. Cowles Foundation Monograph Series (1963)

    Google Scholar 

  2. Arrow, K., Sen, A., Suzumura, K.: Handbook of Social Choice and Welfare. Elsevier (2002)

    Google Scholar 

  3. Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Physica-Verlag, Heidelberg (1999)

    MATH  Google Scholar 

  4. Baker, K.: Condorcet: From Natural Philosophy to Social Mathematics. University of Chicago Press (1975)

    Google Scholar 

  5. Baldwin, J.: A Theory of Mass Assignments for Artificial Intelligence. In: Driankov, D., Ralescu, A.L., Eklund, P. (eds.) IJCAI-WS 1991. LNCS, vol. 833, pp. 22–34. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  6. Baldwin, J.: A calculus for mass assignments in evidential reasoning. In: Yager, R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 513–531. John Wiley & Sons, Inc., New York (1994)

    Google Scholar 

  7. Baldwin, J., Martin, T., Pilsworth, B.: Fril - Fuzzy and Evidential Reasoning in Artificial Intelligence. Research Studies Press Ltd., Taunton (1995)

    Google Scholar 

  8. Belnap, A.: How a computer should think. In: Ryle, G. (ed.) Oxford International Symposium on Contemporary Aspects of Philosophy, pp. 30–55. Oriel Press (1977)

    Google Scholar 

  9. Belnap, A.: A useful four-valued logic. In: Dunn, J., Epstein, G., Reidel, D. (eds.) Modern Uses of Multiple-Valued Logic, pp. 8–37. Reidel Publishing Company, Boston (1978)

    Google Scholar 

  10. Cubillo, S., Castiñeira, E.: Measuring contradiction in fuzzy logic. International Journal of General Systems 34(1), 39–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Doherty, P., Driankov, D., Tsoukis, A.: Partial logics and partial preferences. In: Proceedings of the CEMIT 92 International Conference, Tokyo, pp. 525–528 (1992)

    Google Scholar 

  12. Dubarle, D.: Essai sur la généralisation naturelle de la logique usuelle. Mathématique, Informatique, Sciences Humaines 107, 17–73 (1963)

    Google Scholar 

  13. Gabbay, D., Rodrigues, O., Russo, A.: Revision by Translation. Kluwer (1999)

    Google Scholar 

  14. Giles, R.: A formal system for fuzzy reasoning. Fuzzy Sets and Systems 2, 233–257 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hinde, C.: Inference of Fuzzy Relational Tableaux from Fuzzy Exemplifications. Fuzzy Sets and Systems 11, 91–101 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hinde, C.: Intuitionistic Fuzzy Sets, Interval Valued Fuzzy Sets and Mass Assignment: a Unifying Treatment including Inconsistency and Contradiction. International Journal of Computational Intelligence Research 4(4), 372–391 (2009)

    Google Scholar 

  17. Hinde, C.: Knowledge from Contradiction and Inconsistency. In: Atanassow, K., Baczynski, M., Drewniak, J., Kacprzyk, J., Krawczak, M., Szmidt, E., Wygralak, M., Zadrozny, S. (eds.) Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. Foundations, vol. 1, pp. 95–107. Academic Publishing House EXIT, Warsaw (2009)

    Google Scholar 

  18. Hinde, C.: The statement is contradictory. In: Proceedings of 2009 International Conference on Artificial Intelligence and Soft Computing, pp. 235–240. IASTED (September 2009)

    Google Scholar 

  19. Hinde, C., Atanassov, K.: On Intuitionistic Fuzzy Negations and Intuitionistic Fuzzy Modal operators with Contradictory Evidence. In: Dimitrov, D., Mladenov, V., Jordanova, S., Mastorakis, N. (eds.) Proceedings of 9th WSEAS International Conference on Fuzzy Systems (FS 2008) (May 2008)

    Google Scholar 

  20. Hinde, C., Patching, R.: Inconsistent Intuitionistic Fuzzy Sets. In: Atanassov, K., Bustince, H., Hryniewicz, O., Kacprzyk, J., Krawczak, M., Riecan, B., Szmidt, E. (eds.) Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. Foundations, pp. 155–174. Academic Publishing House EXIT, Warsaw (2007)

    Google Scholar 

  21. Hinde, C., Patching, R., McCoy, S.: Inconsistent Intuitionistic Fuzzy Sets and Mass Assignment. In: Atanassov, K., Bustince, H., Hryniewicz, O., Kacprzyk, J., Krawczak, M., Riecan, B., Szmidt, E. (eds.) Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. Foundations, pp. 133–153. Academic Publishing House EXIT, Warsaw (2007)

    Google Scholar 

  22. Hinde, C., Patching, R., Stone, R., Xhemali, D., McCoy, S.: Reasoning Consistently about Inconsistency. In: Garibaldi, J., Angelov, P. (eds.) Proceedings of 2007 IEEE International Conference on Fuzzy Systems, pp. 769–775 (2007)

    Google Scholar 

  23. McHenry, M.: NSF spectrum occupancy measurements project summary (August 2005), http://www.sharedspectrum.com

  24. Nguyen, N.: Advanced methods for inconsistent knowledge management. Springer, London (2008)

    Google Scholar 

  25. Patching, R., Hinde, C., McCoy, S.: Inconsistency and semantic unification. Fuzzy Sets and Systems 157, 2513–2539 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Resconi, G., Hinde, C.: Active sets, fuzzy sets and inconsistency. In: Aranda, J., Xambo, S. (eds.) Proceedings of FUZZIEEE 2010, pp. 354–357. IEEE (2010)

    Google Scholar 

  27. Resconi, G., Kovalerchuk, B.: Agents in Quantum and Neural Uncertainty. In: Medical Information Science Reference, Hershey, New York (2011)

    Google Scholar 

  28. Scott, D.: Some ordered sets in computer science. In: Rival, I. (ed.) Ordered Sets, pp. 677–718. Reidel Publishing Company, Boston (1982)

    Chapter  Google Scholar 

  29. Sen, A.: Collective Choice and Social Welfare. Holden Day (1990)

    Google Scholar 

  30. Thole, U., Zimmermann, H., Zysno, P.: On the suitability of minimum and product operators for the intersection of fuzzy sets. Fuzzy Sets and Systems 2, 167–180 (1979)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Resconi, G., Hinde, C. (2012). Introduction to Active Sets and Unification. In: Nguyen, NT. (eds) Transactions on Computational Collective Intelligence VIII. Lecture Notes in Computer Science, vol 7430. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34645-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34645-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34644-6

  • Online ISBN: 978-3-642-34645-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics