Skip to main content

Kinetics of Crystallization and Segregation: Nucleation in Glass-Forming Systems

  • Chapter
  • First Online:
Book cover The Vitreous State

Abstract

In the present chapter, the basic ideas underlying the theoretical description of nucleation and growth of a newly formed phase, in general, and in melts, in particular, are outlined. This is done for two purposes: The crystallization of glass-forming melts, its initiation and control or inhibition, respectively, determines to a large degree the possibility to transform a melt into a glass or to synthesize a glass-ceramic material with a predetermined structure and desired properties. On the other hand, crystallization processes and phase transformations in glass-forming melts can serve as model systems for the development and verification of different concepts concerning the kinetics of phase transformation processes also in other fields of science and technology. Consequently, the theoretical approaches outlined here are of significant importance for the understanding of the behavior not only of glass-forming systems but also of phase transitions, taking place in any other metastable system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A variety of new monographs devoted to the outline and extension of the classical concepts of nucleation and growth was published in the time since the publication of the first edition of the present book. Out of this spectrum, we would like to mention here, in particular, the following references: Kashchiev [439], Mutaftschiev [586], Milchev [558], Markov [534], Jackson [396], Kelton and Greer [450]; and a series of books edited by one of the authors (J.W.P. Schmelzer, Ed.): Schmelzer et al. [721], Schmelzer [695], Skripov and Faizullin [770], Baidakov [34], Ivanov [387], Slezov [773], Gusak et al. [286] as well as the series of workshop proceedings Schmelzer et al. [720]. For a current review on the state of affairs with respect to experimental and theoretical investigations of crystallization of glass-forming melts, see also the following articles: Fokin et al. [224], Schmelzer [696], Schmelzer [698], Zhuravlev et al. [958], Schmelzer [699], and Schmelzer and Schick [711]. Some particularly important to our point of view own contributions into this field are described briefly in the Chap. 14 and in some of the footnotes to this and subsequent chapters.

  2. 2.

    This assumption is based on the analysis of Gibbs’ equilibrium conditions determining the bulk properties of critical clusters and leading to this consequence.

  3. 3.

    An alternative approach to the the description of spatially inhomogeneous thermodynamic systems (denoted by us as generalized Gibbs approach) and its application to the determination of the properties of critical clusters was developed by the present authors and coworkers in the last decade starting with a paper published in 2000 (Schmelzer et al. [722]). For an illustration, the method is applied there to phase formation processes in solid and liquid solutions. However, it is applicable quite generally and not restricted to this particularly important but anyway special case. The presented there approach is a generalization of the classical Gibbs’ method. It is – like the classical Gibbs method – conceptually simple and directly applicable to real systems, but avoids its shortcomings. Central to this method was originally (later the consequences have been shown to follow directly from the modification of Gibbs classical approach developed by us) the formulation and application of a well-founded principle we denoted as generalized Ostwald’s rule in nucleation. The method allows one the determination of the dependence of the bulk properties of the critical clusters and the work of critical cluster formation in dependence on cluster size provided the bulk properties and the macroscopic values of the surface tension (at planar interfaces) for the possible different states of the system under consideration are known. As it turns out, in the framework of the generalized Gibbs approach the bulk properties – and as a consequence also the interfacial properties – of the critical clusters depend significantly on supersaturation (or the size of the critical clusters). Similarly to the van der Waals, Cahn, and Hilliard and density functional calculations in the determination of the work of critical cluster formation, the newly developed method reproduces the results of the classical Gibbs’ nucleation theory (involving the capillarity approximation) for small values of the supersaturation. However, in contrast to the classical and in agreement with van der Waals-type methods of descriptions of inhomogeneous systems, for initial states approaching the spinodal curve, the work of critical cluster formation, determined via the newly developed approach, is shown to tend to zero. As an immediate additional consequence, the method gives a more accurate description of the experimental results on nucleation rates also in the intermediate ranges of the initial supersaturation. This method was further developed then in a series of papers and applied also to the determination of the properties of sub- and supercritical clusters (Schmelzer et al. [725]; Schmelzer et al. [3]). The theoretical foundation of the generalized Gibbs approach is given in: Schmelzer et al. [729]. An overview on further developments and the application of this method to the analysis of experimental data is given in: Schmelzer and Abyzov [702]; Abyzov and Schmelzer [3]; Schmelzer [697]; Schmelzer et al. [728]; Abyzov et al. [4]; Schmelzer and Abyzov [703]; Schmelzer and Abyzov [704] (a more detailed overview is given in the Chap. 14). In the present book, however, we employ the classical approach treating the clusters widely as small aggregates with the bulk properties of the newly evolving macroscopic phases and introduce corrections via a curvature dependence of the surface tension.

  4. 4.

    Note as well that independent of the specific expression for the curvature dependence of the surface tension, always the equation

    $$\Delta G_{(\mathit{cluster})}^{(c)}(\sigma (R)) = \Delta G_{ (\mathit{cluster})}^{(c)}(\sigma (R \rightarrow \infty )){\left ( \frac{\sigma (R)} {\sigma (\infty )}\right )}^{3}$$

    holds, if the surface of tension is chosen as the dividing surface (cf. Parlange (1970) [625], Ulbricht, Schmelzer et al. (1988) [874]). Latter result was already well-known to J.W. Gibbs and the effects of a curvature dependence of the surface tension on nucleation have been also already discussed in detail by him [249].

  5. 5.

    A complete analytical theoretical description of nucleation-growth processes in solutions accounting for depletion effects – i.e. changes of the state of the ambient phase due to the formation of clusters of the newly evolving phase – is given in Slezov and Schmelzer [776, 778]; and in Slezov [773] as well as in cited there papers.

  6. 6.

    A derivation of this relation and some additional discussion can be found in Chap. 14.

  7. 7.

    For a more recent as compared with [775] formulation of these results including further developments, in particular, accounting for depletion effects on the course of first-order phase transitions, see the already cited references Slezov and Schmelzer [776, 778]; Slezov et al. [779]; and Slezov [773] and further cited there papers.

  8. 8.

    Indeed, in terms of the classical Gibbs approach, the bulk properties of the cluster phase are determined by Gibbs equilibrium conditions, equality of temperature in the cluster (specified by α) and ambient (β) phases, T α  = T β , and equality of chemical potentials, μ  = μ , of all i = 1, 2, , k components. Provided the cluster is considered to be of spherical shape and the surface of tension is chosen as the dividing surface, then the properties of the critical clusters (W c work of critical cluster formation; R c radius of the cluster referred to the surface of tension) are defined via

    $$W_{c} = \frac{1} {3}\sigma A_{c}\;,\qquad A_{c} = 4\pi R_{c}^{2}\;,\qquad p_{\alpha } - p_{\beta } = \frac{2\sigma } {R_{c}}\;.$$

    Provided W c is known (for example, from experiment or statistical-mechanical computations) then always R c and σ can be determined from above set of equations, i.e., one can always construct a spherical cluster – in terms of Gibbs thermodynamic theory – leading to the same value of the work of critical cluster formation as observed in experiment. Of course, in experiment the shape of the critical cluster can be much different as compared to a sphere or the cluster may be too small to allow one a thermodynamic description, anyway, such Gibbs’ model cluster can be uniquely defined. Similar considerations hold also in the case that the generalized Gibbs approach is employed in the analysis.

  9. 9.

    For a comprehensive discussion of this circle of problems, cf. Schmelzer [693, 694]. In these publications, a detailed analysis of the initial formulation of the nucleation theorem as given by Kashchiev in 1982 [436] is presented. In a next step, a new formulation of the nucleation theorem, mathematically widely equivalent to the form, as derived by Oxtoby and Kashchiev in 1994 [619] employing the classical Gibbs’s approach, is developed in above cited publications. This formulation is, however, more easily applicable to the interpretation of experimental results as compared with the original expressions given by Oxtoby and Kashchiev. It can be utilized straightforwardly also in cases where the original version cannot be employed and allows one, in addition, a variety of further theoretical developments. It is shown, moreover, first in the framework of Gibbs’s theory of heterogeneous systems that the nucleation theorem holds not only for critical clusters but for clusters of arbitrary sizes as well. The new formulation of the nucleation theorem is applied then to the analysis of different cases of phase formation. It is shown further on that an alternative thermodynamic derivation of the nucleation theorem both for clusters of critical as well as for arbitrary sizes can be given at certain specified conditions based on the van der Waals approach to the description of heterogeneous systems. The limits of validity of the nucleation theorem are analyzed with respect to its applicability to real systems; i.e., the problem is discussed to what extent the nucleation theorem may give an adequate description of properties of the real critical clusters determining the nucleation process in nature.

  10. 10.

    A detailed analysis of the peculiarities of nucleation in confined space and the derivation of conclusions concerning the general scenario of first-order phase transitions based on the generalized Gibbs approach was performed recently by one of the authors in cooperation with A. S. Abyzov (Schmelzer and Abyzov [703]). The general conclusions remain widely the same as discussed in the present section and derived here based on the classical Gibbs’ approach.

References

  1. Abyzov, A.S., Schmelzer, J.W.P.: Nucleation versus Spinodal Decomposition in Confined Binary Solutions. J. Chem. Phys. 127, 114504 (2007)

    ADS  Google Scholar 

  2. Abyzov, A.S., Schmelzer, J.W.P., Kovalchuk, A.A., Slezov, V.V.: Evolution of cluster size-distributions in nucleation-growth and spinodal decomposition processes in a regular solution. J. Non Cryst. Solids 356, 2915 (2010)

    ADS  Google Scholar 

  3. Avrami, M.: J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941)

    Google Scholar 

  4. Avramov, I., Gutzow, I.: J. Non Cryst. Solids 104, 148 (1988)

    ADS  Google Scholar 

  5. Baidakov, V.G.: Explosive Boiling of Superheated Cryogenic Liquids. WILEY-VCH, Berlin-Weinheim (2007)

    Google Scholar 

  6. Bartels, J.: Zur Theorie von Keimbildung und Keimwachstum in kondensierten Systemen. Dissertation A, Rostock (1991)

    Google Scholar 

  7. Bartels, J., Lembke, U., Pascova, R., Schmelzer, J., Gutzow, I.: J. Non Cryst. Solids 136, 181 (1991)

    ADS  Google Scholar 

  8. Becker, R.: Theorie der Wärme. Springer, Berlin-Göttingen-Heidelberg (1964)

    MATH  Google Scholar 

  9. Becker, R., Döring, W.: Ann. Phys. 24, 719 (1935)

    MATH  Google Scholar 

  10. Berry, R.S., Burdett, J., Castleman, A.W. (eds.): Proceedings VI-th International Meeting on Small Particles and Inorganic Clusters, Chicago, USA, September 1992, Z. Phys. D 26 (1993)

    Google Scholar 

  11. Binder, K., Stauffer, D.: Adv. Phys. 25, 343 (1976)

    ADS  Google Scholar 

  12. Buff, F.P., Kirkwood, J.G.: J. Chem. Phys. 18, 991 (1950)

    ADS  Google Scholar 

  13. Cahn, J.W., Hilliard, J.E.: J. Chem. Phys. 28, 258 (1958); 31, 688 (1959)

    Google Scholar 

  14. Chandrasekhar, S.: Rev. Mod. Phys. 15, 1 (1943)

    MathSciNet  ADS  MATH  Google Scholar 

  15. Chernov, A.A.: Formation of crystals. In: Modern Crystallography, vol. 3. Nauka Publishers, Moscow (1980, in Russian)

    Google Scholar 

  16. Christov, S.G.: Collision Theory and Statistical Theory of Chemical Reaction. Lecture Notes in Chemistry, Ser. Ed. G. Berthier et al., Springer, Berlin/Heidelberg/New York (1980)

    Google Scholar 

  17. Collins, F.C.: Z. Elektrochem. 59, 404 (1955)

    Google Scholar 

  18. Courtney, W.G.: J. Chem. Phys. 36, 2018 (1962)

    ADS  Google Scholar 

  19. Defay, R., Prigogine, I., Bellemans, R., Everett, D.H.: Surface Tension and Adsorption. Longmans, London (1966)

    Google Scholar 

  20. Demo, P., Kozicek, Z.: Phys. Rev. B 48, 3620 (1993)

    Google Scholar 

  21. Echt, O., Recknagel, E. (eds.): Small Particles and Inorganic Clusters, ISSPIC5, September 1990; Springer Verlag, 1991; see also the Proceedings of the previous symposia on small particles and inorganic clusters

    Google Scholar 

  22. Farkas, L.: Z. Phys. Chem. 125, 236 (1927)

    Google Scholar 

  23. Farley, F.J.M.: The theory of the condensation of supersaturated ion-free vapour. Proc. R. Soc. (Lond.) A 212, 530 (1952)

    Google Scholar 

  24. Feder, J., Russell, K.C., Lothe, J., Pound, G.M.: Adv. Phys. 15, 117 (1966)

    ADS  Google Scholar 

  25. Filipovich, V.N.: Initial stages of the crystallization of glasses. In: The Vitreous State, p. 9. Academy of Sciences Publishers USSR, Moscow-Leningrad (1963, in Russian)

    Google Scholar 

  26. Fokin, V.M., Kalinina, A.M., Filipovich, V.N.: Fiz. i Khimia Stekla 6, 148 (1980)

    Google Scholar 

  27. Fokin, V.M., Zanotto, E.D., Yuritsyn, N.S., Schmelzer, J.W.P.: Homogeneous Crystal Nucleation in Silicate Glasses: A Forty Years Perspective. J. Non Cryst. Solids 352, 2681 (2006)

    ADS  Google Scholar 

  28. Frenkel, Y.I.: The Kinetic Theory of Liquids. Oxford University Press, Oxford (1946)

    Google Scholar 

  29. Frisch, K.L., Carlier, C.C.: J. Chem. Phys. 54, 4326 (1971)

    ADS  Google Scholar 

  30. Geil, P.: Polymer Single Crystals. Interscience Publishers, New York (1963)

    Google Scholar 

  31. Gerngross, O., Herrmann, K., Abitz, W.: Z. Phys. Chem. (Leipz.) B 10, 371 (1930)

    Google Scholar 

  32. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Sci. 3, 108, 343 (1875–78); see also: Gibbs, J.W.: The collected works. Thermodynamics, vol. 1. New York/London/Toronto (1928)

    Google Scholar 

  33. Gindt, R., Kern, R.: Ber. Bunsenges. für Phys. Chem. 72, 459 (1968)

    Google Scholar 

  34. Gorski, N.: Z. Phys. Chem. (Leipzig) 270, 817 (1989)

    Google Scholar 

  35. Greer, A.L. et al.: J. Cryst. Growth 99, 38 (1990)

    ADS  Google Scholar 

  36. Gunton, J.D., San Miguel, M., Sahni, P.S.: The dynamics of first-order phase transitions. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 8. Academic, London/New York (1983)

    Google Scholar 

  37. Gusak, A.M. et al.: Diffusion-Controlled Solid-State Reactions. WILEY-VCH, Berlin-Weinheim (2010)

    Google Scholar 

  38. Gutzow, S.: Technology of Glass. Tekhnika Publishers, Sofia (1963, in Bulgarian)

    Google Scholar 

  39. Gutzow, I.: The thermodynamic functions of super-cooled glass-forming liquids and the temperature dependence of their viscosity. In: Douglas, R.W., Ellis, B. (eds.) Amorphous Materials, Proceedings of the Third International Conference, Sheffield, 1970, p. 159. Wiley, London (1972)

    Google Scholar 

  40. Gutzow, I.: Fiz. i. Khim. Stekla 1, 431 (1975)

    Google Scholar 

  41. Gutzow, I.: J. Non Cryst. Solids 45, 301 (1981)

    ADS  Google Scholar 

  42. Gutzow, I., Dobreva, A.: J. Non Cryst. Solids 129, 266 (1991)

    ADS  Google Scholar 

  43. Gutzow, I., Dobreva, A.: Kinetics of nucleation and crystallization in polymer melts. In: Proceedings of the Atlanta Meeting of the American Ceramic Society on Nucleation and Crystallization in Glasses and Liquids, Atlanta, July, 1992, p. 151, American Ceramic Society, Columbus, Ohio (1992)

    Google Scholar 

  44. Gutzow, I., Dobreva, A.: Polymer 33, 451 (1992)

    Google Scholar 

  45. Gutzow, I., Kashchiev, D.: The kinetics of overall crystallization of undercooled melts in terms of the non-steady state theory of nucleation. In: Hench, L.L., Freiman, S.W. (eds.) Kinetics of Overall Crystallization in Terms of the Non-Steady State Theory of Nucleation. Advances in Nucleation and Crystallization of Glasses, p. 116. American Ceramic Society, Columbus Ohio (1971)

    Google Scholar 

  46. Gutzow, I., Toschev, S.: Kristall und Technik 3, 485 (1968)

    Google Scholar 

  47. Gutzow, I., Toschev, S.: J. Cryst. Growth 7, 215 (1970)

    ADS  Google Scholar 

  48. Gutzow, I., Toschev, S.: The kinetics of nucleation and the formation of glass-ceramic materials. In: Hench, L.L., Freiman, S.W. (eds.) Advances in Nucleation and Crystallization of Glasses, p. 10. American Ceramic Society, Columbus Ohio (1971)

    Google Scholar 

  49. Gutzow, I., Toschev, S., Marinov, M., Popov, E.: Kristall und Technik 3, 337 (1968)

    Google Scholar 

  50. Gutzow, I., Streltzina, M.W., Popov, E.: Commun. Dep. Chem. (Bulgarian Academy of Sciences) 1, 19 (1968)

    Google Scholar 

  51. Gutzow, I., Konstantinov, I., Kaischew, R.: Commun. Dep. Chem. (Bulgarian Academy of Sciences) 5, 433 (1972)

    Google Scholar 

  52. Gutzow, I., Zlateva, E., Alyakov, S., Kovatscheva, T.: J. Mater. Sci. 12, 1190 (1977)

    ADS  Google Scholar 

  53. Gutzow, I., Kashchiev, D., Avramov, I.: J. Non Cryst. Solids 73, 477 (1985)

    ADS  Google Scholar 

  54. Gutzow, I., Dobreva, A., Schmelzer, J.: J. Mater. Sci. 28, 901 (1993)

    ADS  Google Scholar 

  55. Haase, R.: Thermodynamik der Mischphasen. Springer, Berlin (1956)

    MATH  Google Scholar 

  56. Haase, R.: Thermodynamik der Irreversiblen Prozesse. Verlag D. Steinkopf, Darmstadt (1963)

    Google Scholar 

  57. Haberland, H. (ed.): Clusters of Atoms and Molecules – Theory, Experiment, and Clusters of Atoms. Springer, Berlin/Heidelberg (1994)

    Google Scholar 

  58. Halpern, V.: Br. J. Appl. Phys. 18, 163 (1967)

    ADS  Google Scholar 

  59. Hammel, J.J.: J. Chem. Phys. 46, 2234 (1967)

    ADS  Google Scholar 

  60. Hänggi, P., Talkner, P., Borkovec, M.: Rev. Mod. Phys. 62, 251 (1980)

    Google Scholar 

  61. Hanszen, K.J.: Z. Phys. 157, 523 (1960)

    ADS  Google Scholar 

  62. Hill, T.L.: J. Phys. Chem. 56, 526 (1952)

    Google Scholar 

  63. Hirth, J.P., Pound, G.M.: Condensation and Evaporation. Pergamon Press, London (1963)

    Google Scholar 

  64. Hodgson, A.W.: Adv. Colloid Interface Sci. 21, 303 (1984)

    Google Scholar 

  65. Hoffman, J.D.: J. Chem. Phys. 29, 1192 (1958)

    ADS  Google Scholar 

  66. Hoffman, J.D.: SPE Trans. 4(6), 1 (1964)

    Google Scholar 

  67. Ivanov, D.Y.: Critical Behavior of Non-Ideal Systems. WILEY-VCH, Berlin-Weinheim (2008)

    MATH  Google Scholar 

  68. Jackson, K.A.: J. Cryst. Growth 50, 13 (1969)

    ADS  Google Scholar 

  69. Jackson, K.A.: Mater. Sci. Eng. 65, 7 (1984)

    ADS  Google Scholar 

  70. Jackson, K.A.: Kinetic Processes: Crystal Growth, Diffusion, and Phase Transitions in Materials. WILEY-VCH, Weinheim (2004)

    MATH  Google Scholar 

  71. James, P.F.: Phys. Chem. Glass. 15, 95 (1974)

    Google Scholar 

  72. Jena, P.S., Khanna, S.N., Rao, B.K.: Physics and Chemistry of Finite Systems: From Clusters to Crystals, vol. 1. Kluwer Academic Publishers, Dordrecht/Boston/London (1992)

    Google Scholar 

  73. Kahlweit, M.: Z. Phys. Chem. (NF) 28, 245 (1961)

    Google Scholar 

  74. Kaischew, R.: Bull. Acad. Bulg. Sci. (Phys) 1, 100, 191 (1952)

    Google Scholar 

  75. Kaischew, R.: Acta Phys. Hung. 8, 75 (1957)

    Google Scholar 

  76. Kaischew, R., Budewski, E.: Contemp. Phys. 8, 489 (1967)

    ADS  Google Scholar 

  77. Kaischew, R., Mutaftschiev, B.: Bull. Inst. Chim. Bulg. Acad. Sci. 7, 177 (1959)

    Google Scholar 

  78. Kaischew, R., Krastanov, K.: Z. Phys. Chem. B 23, 158 (1933)

    Google Scholar 

  79. Kaischew, R., Stoyanov, S.: Commun. Dep. Chem. (Bulgarian Academy of Sciences) 2, 127 (1969)

    Google Scholar 

  80. Kaischew, R., Stranski, I.N.: Z. Phys. Chem. A 170, 295 (1934); B26, 317 (1934)

    Google Scholar 

  81. Kalinina, A.M., Fokin, V.M., Filipovich, V.N.: Fiz. Khim. Stekla 2, 298 (1976)

    Google Scholar 

  82. Kantrowitz, A.: J. Chem. Phys. 19, 1097 (1951)

    ADS  Google Scholar 

  83. Kashchiev, D.: Surf. Sci. 14, 209 (1969); 18, 389 (1969)

    Google Scholar 

  84. Kashchiev, D.: J. Chem. Phys. 76, 5098 (1982)

    ADS  Google Scholar 

  85. Kashchiev, D.: Cryst. Res. Technol. 19, 1413 (1984)

    Google Scholar 

  86. Kashchiev, D.: Krist. Tech. 20, 723 (1985)

    Google Scholar 

  87. Kashchiev, D.: Nucleation: Basic Theory and Applications. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  88. Keller, A.: Phil. Mag. 2, 1171 (1957)

    ADS  Google Scholar 

  89. Keller, A.: Chain folded crystallization of polymers from discovery to present day: a personalized journey. In: Chambers, R.G., Enderby, J.E., Hilger, A. (eds.) Sir Charles Frank: An 80s Birthday Tribute, p. 256. Hilger Publications, Bristol (1991)

    Google Scholar 

  90. Kelton, K.F., Greer, A.L.: J. Non Cryst. Solids 79, 295 (1986)

    ADS  Google Scholar 

  91. Kelton, K.F., Greer, A.L.: Phys. Rev. B38, 10089 (1988)

    ADS  Google Scholar 

  92. Kelton, K.F., Greer, A.L.: Nucleation in Condensed Matter: Applications in Materials and Biology. Elsevier, (2010)

    Google Scholar 

  93. Kelton, K.F., Greer, A.L., Thompson, C.V.: J. Chem. Phys. 72, 6261 (1983)

    ADS  Google Scholar 

  94. Kirkwood, J.G., Buff, F.P.: J. Chem. Phys. 17, 338 (1949)

    ADS  Google Scholar 

  95. Knacke, O., Stranski, I.N.: Ergebnisse der exakten Naturwissenschaften 26, 383 (1952)

    Google Scholar 

  96. Knacke, O., Stranski, I.N.: Mechanisms of evaporation. In: Chalmers, B., King, R. (eds.) Progress of Metal Science, vol. 6. Pergamon Press, London/New York (1956)

    Google Scholar 

  97. Kobeko, P.P.: Amorphous Materials. Academy of Sciences USSR Press, Moscow, Leningrad (1952, in Russian)

    Google Scholar 

  98. Konobejewski, S.: Z. Phys. Chem. 171, 25 (1939)

    Google Scholar 

  99. Korshak, V.V.: Progress in Polymer Chemistry. Mir Publishers, Moscow (1965, in Russian)

    Google Scholar 

  100. Kouchi, A., Kuroda, T.: Jpn. J. Appl. Phys. 29, 807 (1990)

    ADS  Google Scholar 

  101. Kozisek, Z.: Non-steady state nucleation kinetics. In: Chvoj, Z., Sestak, J., Triska, A. (ed.) Kinetic Phase Diagrams, p. 277. Elsevier Science Publishers, New York (1991)

    Google Scholar 

  102. Kozisek, Z., Demo, P.: J. Cryst. Growth 132, 491 (1993)

    ADS  Google Scholar 

  103. Kramers, H.A.: Physica 7, 284 (1940)

    MathSciNet  ADS  MATH  Google Scholar 

  104. Kuhrt, F.: Z. Phys. 131, 185, 205 (1952)

    Google Scholar 

  105. Landau, L.D., Lifschitz, E.M.: Statistische Physik. Akademie-Verlag, Berlin (1969)

    Google Scholar 

  106. Lewis, B.: Thin Solid Films 1, 85 (1967)

    ADS  Google Scholar 

  107. Lothe, J., Pound, G.M.: J. Chem. Phys. 36, 2080 (1962)

    ADS  Google Scholar 

  108. Lothe, J., Pound, G.M.: J. Chem. Phys. 45, 630 (1966)

    ADS  Google Scholar 

  109. Lyubov, B.Y., Roitburd, A.L.: On the rate of nucleation of the new phase in one-component systems. In: Problems of Metal Science and Metal Physics, vol. 5, p. 91. State Publishers of Metallurgy, Moscow (1958, in Russian)

    Google Scholar 

  110. Markov, I.: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy. World Scientific, Singapore (2002)

    Google Scholar 

  111. Mason, B.J.: The Physics of Clouds. Clarendon Press, Oxford (1957)

    Google Scholar 

  112. Matusita, K., Tashiro, M.: J. Non Cryst. Solids 11, 471 (1975)

    ADS  Google Scholar 

  113. Mc Donald, J.E.: Am. J. Phys. 30, 870 (1962); 31, 31 (1963)

    Google Scholar 

  114. Meiwes-Broer, K.H., Lutz, H.O.: Phys. Blätter 47, 283 (1991)

    Google Scholar 

  115. Milchev, A.: Electrocrystallization: Fundamentals of Nucleation and Growth. Kluwer, Dordrecht (2002)

    Google Scholar 

  116. Milchev, A., Stoyanov, S.: J. Electroanal. Chem. 72, 33 (1976)

    Google Scholar 

  117. Milchev, A., Stoyanov, S., Kaischew, R.: Thin Solid Films 22, 255, 267 (1974)

    Google Scholar 

  118. Moelwyn-Hughes, E.: Physical Chemistry. Pergamon Press, Oxford (1972)

    Google Scholar 

  119. Morey, G.W.: The Properties of Glass. Reinhold Publishers, New York (1938, 1954)

    Google Scholar 

  120. Mutaftschiev, B.: Nucleation Theory. In: Hurle, T.D.J. (ed.) Handbook of Crystal Growth, p. 187. Elsevier Science Publishers B.V., Amsterdam (1993)

    Google Scholar 

  121. Mutaftschiev, B.: The Atomistic Nature of Crystal Growth. Springer, Berlin (2001)

    Google Scholar 

  122. Narsimhan, G., Ruckenstein, E.: J. Colloid Interface Sci. 128, 549 (1989)

    Google Scholar 

  123. Neumann, K., Döring, W.: Z. Phys. Chem. 186 A, 193, 203 (1940)

    Google Scholar 

  124. Nowakowski, B., Ruckenstein, E.: J. Chem. Phys. 94, 1397 (1991)

    ADS  Google Scholar 

  125. Ono, B., Kondo, S.: Molecular theory of surface tension in liquids. In: Flügge, S. (ed.) Handbuch der Physik, vol. 10. Springer, Berlin (1960)

    Google Scholar 

  126. Ornstein, G.E., Uhlenbeck, L.S.: Phys. Rev. 36, 823 (1930)

    ADS  MATH  Google Scholar 

  127. Oxtoby, D.W., Kashchiev, D.: J. Chem. Phys. 100, 7665 (1994)

    ADS  Google Scholar 

  128. Parlange, J.I.: J. Cryst. Growth 6, 311 (1970)

    ADS  Google Scholar 

  129. Pascova, R., Gutzow, I.: Atomistic model for crystal nucleation in glassforming melts. In: Proceedings of the 2-nd International Conference on Fundamentals of Glass Science and Technology, Venice, Italy (1993)

    Google Scholar 

  130. Pascova, R., Gutzow, I., Tomov, I.: J. Mater. Sci. 25, 913 (1990)

    Google Scholar 

  131. Pascova, R., Gutzow, I., Schmelzer, J.: J. Mater. Sci. 25, 921 (1990)

    Google Scholar 

  132. Penkov, I., Gutzow, I.: J. Mater. Sci. 19, 233 (1984)

    ADS  Google Scholar 

  133. Petrov, Ju. I.: Physics of Small Particles. Nauka Publishers, Moscow (1982, in Russian)

    Google Scholar 

  134. Price, F.P.: Mechanism of Polymer Crystallization. In: Zettlemoyer, A.C. (ed.) Nucleation, p. 405. Dekker, New York (1969)

    Google Scholar 

  135. Prigogine, I., Bellemans, A.: Statistical mechanics of surface tension and adsorption. In: Lee, L.H. (ed.) Adhesion and Adsorption of Polymers. Part A. Plenum Press, New York (1980)

    Google Scholar 

  136. Prigogine, I., Defay, R.: Chemical Thermodynamics. Longmans, London (1954)

    Google Scholar 

  137. Probstein, R.J.: J. Chem. Phys. 19, 619 (1951)

    ADS  Google Scholar 

  138. Pugatchev, V.S.: Theory of Probability Functions. Fizmatgiz, Moscow (1960, in Russian)

    Google Scholar 

  139. Reiss, H.: J. Chem. Phys. 18, 840 (1950)

    ADS  Google Scholar 

  140. Rhodin, T.H., Walton, D.: Nucleation of oriented films. In: Francombe, M.H., Sato, H. (eds.) Single Crystal Films; Proceedings of the International Conference, p. 31, Blue Bell, PA, May 1963; Pergamon Press, New York (1964)

    Google Scholar 

  141. Röpke, G.: Statistische Mechanik des Nichtgleichgewichts. Deutscher Verlag der Wissenschaften, Berlin (1987)

    Google Scholar 

  142. Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Clarendon Press, Oxford (1982)

    Google Scholar 

  143. Ruckenstein, E., Nowakowski, B.: J. Chem. Phys. 94, 1397 (1991)

    ADS  Google Scholar 

  144. Rusanov, A.I.: Phasengleichgewichte und Grenzflächenerscheinungen. Akademie-Verlag, Berlin (1978)

    Google Scholar 

  145. Schmelzer, J.: Z. Phys. Chem. 266, 1057 (1985)

    Google Scholar 

  146. Schmelzer, J.: Thermodynamik finiter Systeme und die Kinetik von thermodynamischen Phasenübergängen 1. Art. Dissertation B, Rostock (1985)

    Google Scholar 

  147. Schmelzer, J.: J. Chem. Soc. Faraday Trans. I 82, 1421 (1986)

    Google Scholar 

  148. Schmelzer, J.: Phys. Stat. Soldi b161, 173 (1990)

    Google Scholar 

  149. Schmelzer, J.W.P.: Comments on the nucleation theorem. J. Colloid Interface Sci. 242, 354 (2001)

    Google Scholar 

  150. Schmelzer, J.W.P.: Some additional comments on the nucleation theorem. Russian J. Phys. Chem. 77(Suppl. 1), S 143 (2003)

    Google Scholar 

  151. Schmelzer, J.W.P. (ed.): Nucleation Theory and Applications. WILEY-VCH, Berlin-Weinheim (2005)

    Google Scholar 

  152. Schmelzer, J.W.P.: Crystal Nucleation and Growth in Glassforming Melts: Experiment and Theory. J. Non Cryst. Solids 354, 269 (2008)

    ADS  Google Scholar 

  153. Schmelzer, J.W.P.: Generalized Gibbs thermodynamics and nucleation-growth phenomena. In: Rzoska, S., Drozd-Rzoska, A., Mazur, V. (eds.) Proceedings of the NATO Advanced Research Workshop Metastable Systems under Pressure, Odessa, Ukraine, 4.-8. October 2008, pp. 389–402, Springer (2009)

    Google Scholar 

  154. Schmelzer, J.W.P.: On the Determination of the Kinetic Pre-factor in Classical Nucleation Theory. J. Non Cryst. Solids 356, 2901 (2010)

    ADS  Google Scholar 

  155. Schmelzer, J.W.P.: Structural Order Parameters, Relaxation and Crystallization, Proceedings International Congress on Glass 2010, Salvador de Bahia, Brazil

    Google Scholar 

  156. Schmelzer, J.W.P., Abyzov, A.S.: Generalized Gibbs’ approach to the thermodynamics of heterogeneous systems and the kinetics of first-order phase transitions. J. Eng. Thermophys. 16, 119 (2007)

    Google Scholar 

  157. Schmelzer, J.W.P., Abyzov, A.S.: Thermodynamic analysis of nucleation in confined space: generalized gibbs approach. J. Chem. Phys. 134, 054511 (2011)

    ADS  Google Scholar 

  158. Schmelzer, J.W.P., Abyzov, A.S.: Comment on “minimum free-energy pathway of nucleation”. J. Chem. Phys. 135, 134508 (2011); 136, 107101 (2012)

    Google Scholar 

  159. Schmelzer, J., Mahnke, R.: J. Chem. Soc. Faraday Trans. I 82, 1413 (1986)

    Google Scholar 

  160. Schmelzer, J.W.P., Schick, C.: Dependence of crystallization processes of glass-forming melts on prehistory: A theoretical approach to a quantitative treatment. Phys. Chem. Glass. 53, 99–106 (2012)

    Google Scholar 

  161. Schmelzer, J., Ulbricht, H.: J. Colloid Interface Sci. 117, 325 (1987)

    Google Scholar 

  162. Schmelzer, J., Möller, J., Gutzow, I., Pascova, R., Müller, R., Pannhorst, W.: J. Non Cryst. Solids 183, 215 (1995)

    ADS  Google Scholar 

  163. Schmelzer, J., Gutzow, I., Schmelzer, J. Jr.: J. Colloid Interface Sci. 178, 657 (1996)

    Google Scholar 

  164. Schmelzer, J.W.P., Röpke, G., Priezzhev, V.B. (eds.): Nucleation Theory and Applications, 5 vols. Joint Institute for Nuclear Research Publishing Department, Dubna, Russia (1999, 2002, 2005, 2008, 2011)

    Google Scholar 

  165. Schmelzer, J., Röpke, G., Mahnke, R. (eds.): Aggregation Phenomena in Complex Systems. WILEY-VCH, Weinheim (1999)

    MATH  Google Scholar 

  166. Schmelzer, J.W.P., Schmelzer, J. Jr., Gutzow, I.S.: Reconciling Gibbs and van der Waals: A new approach to nucleation theory. J. Chem. Phys. 112, 3820 (2000)

    ADS  Google Scholar 

  167. Schmelzer, J.W.P., Gokhman, A.R., Fokin, V.M.: On the dynamics of first-order phase transitions in multi-component systems. J. Colloid Interface Sci. 272, 109 (2004)

    Google Scholar 

  168. Schmelzer, J.W.P., Fokin, V.M., Abyzov, A.S., Zanotto, E.D., Gutzow, I.: How do crystals form and grow in glass-forming liquids: Ostwald’s rule of stages and beyond. Int. J. Appl. Glass Sci. 1, 16 (2010)

    Google Scholar 

  169. Schmelzer, J.W.P., Boltachev, G.Sh., Baidakov, V.G.: Classical and generalized Gibbs’ approaches and the work of critical cluster formation in nucleation theory. J. Chem. Phys. 124, 194503 (2006)

    ADS  Google Scholar 

  170. Shneidman, V.A.: J. Technol. Phys. (USSR) 58, 2202 (1988)

    Google Scholar 

  171. Shneidman, V.A.: Transient kinetics of nucleation. A review of russian papers. In: proceedings of the 13-th International Conference on Nucleation and Atmospheric Aerosols, Salt Lake City, Utah, 22—28 August, 1992

    Google Scholar 

  172. Shneidman, V.A., Hänggi, P.: Phys. Rev. E49, 82 (1994)

    Google Scholar 

  173. Shneidman, V.A., Weinberg, M.: J. Chem. Phys. 97, 3621 (1992)

    ADS  Google Scholar 

  174. Shi, G., Seinfeld, J.H., Okuyama, K.: Phys. Rev. A41, 2101 (1990); J. Chem. Phys. 93, 9033 (1990)

    Google Scholar 

  175. Skapski, A.S.: The surface tension of liquid metals. J. Chem. Phys. 16, 389 (1948)

    ADS  Google Scholar 

  176. Skapski, A.S.: A next-neighbors theory of maximum undercooling. Acta Met. 4, 583 (1956)

    Google Scholar 

  177. Skripov, V.P., Faizullin, M.Z.: Solid-Liquid-Gas Phase Transitions and Thermodynamic Similarity. WILEY-VCH, Berlin-Weinheim (2006)

    Google Scholar 

  178. Skripov, W.P., Koverda, V.P.: Spontane Kristallisation unterkühlter Flüssigkeiten. Nauka, Moskau (1984, in Russian)

    Google Scholar 

  179. Slezov, V.V.: Kinetics of First-Order Phase Transitions. WILEY-VCH, Berlin-Weinheim (2009)

    Google Scholar 

  180. Slezov, V.V., Schmelzer, J.: J. Phys. Chem. Solids 55, 243 (1994)

    ADS  Google Scholar 

  181. Slezov, V.V., Schmelzer, J.W.P.: Kinetics of formation of a new phase with an arbitrary stoichiometric composition in a multi-component solid solution. Phys. Rev. E 65, 031506 (2002)

    Google Scholar 

  182. Slezov, V.V., Schmelzer, J.W.P., Kinetics of Nucleation – Growth Processes: The First Stages, J. W. P. Schmelzer, V. V. Slezov, G. Röpke, J. Schmelzer, Jr.: Shapes of cluster size distributions evolving in nucleation - growth processes. In: Schmelzer, J.W.P., Röpke, G., Priezzhev, V.B. (eds.) Nucleation Theory and Applications, pp. 6–81, 82–129. Joint Institute for Nuclear Research Publishing House, Dubna (1999)

    Google Scholar 

  183. Slezov, V.V., Schmelzer, J.W.P., Abyzov, A.S.: A new method of determination of the coefficients of emission in nucleation theory. In: Schmelzer, J.W.P. (ed.), Nucleation Theory and Applications, pp. 49–94. WILEY-VCH, Berlin-Weinheim (2005)

    Google Scholar 

  184. Spaepen, F.: Solid State Phys. 47, 1 (1994)

    Google Scholar 

  185. Spaepen, F., Fransaer, J.: Adv. Eng. Mat. 2(9), 593–596 (2000)

    Google Scholar 

  186. Springer, G.S.: Adv. Heat Transf. 14, 281 (1978)

    Google Scholar 

  187. Stefan, J.: Wiedemanns Annalen der Physik und Chemie 29, 655 (1886)

    ADS  Google Scholar 

  188. Stoyanov, S.: Thin Solid Films 18, 91 (1973)

    ADS  Google Scholar 

  189. Stoycev, N., Budurov, S., Kovatchev, P., Kovatchev, M.: Krist. Tech. 8, 21 (1973)

    Google Scholar 

  190. Tammann, G.: Der Glaszustand. Leopold Voss Verlag, Leipzig (1933)

    Google Scholar 

  191. Thomson, W.: Proc. R. Soc. Edinb. 7, 63 (1870); Phil. Mag. 42, 448 (1871)

    Google Scholar 

  192. Tolman, R.C.: J. Chem. Phys. 16, 758 (1948)

    ADS  Google Scholar 

  193. Tolman, R.C.: J. Chem. Phys. 17, 333 (1949)

    ADS  Google Scholar 

  194. Toschev, S.: Processes of phase formation in electrolytic deposition of metals. Ph.D. thesis, Bulgarian Academy of Sciences, Sofia (1969)

    Google Scholar 

  195. Toschev, S.: Equilibrium forms. In: Hartmann, P. (ed.) Crystal Growth: An Introduction, p. 328. North-Holland, Amsterdam (1973)

    Google Scholar 

  196. Toschev, S., Gutzow, I.: Krist. Tech. 7, 43 (1972)

    Google Scholar 

  197. Trinkaus, H., Yoo, M.H.: Philos. Mag. A55, 269 (1987)

    ADS  Google Scholar 

  198. Turnbull, D., Fisher, J.C.: J. Chem. Phys. 17, 71 (1949)

    ADS  Google Scholar 

  199. Ulbricht, H., Schmelzer, J., Mahnke, R., Schweitzer, F.: Thermodynamics of Finite Systems and the Kinetics of First-Order Phase Transitions. Teubner, Leipzig (1988)

    Google Scholar 

  200. Vogelsberger, W.: J. Colloid Interface Sci. 88, 17 (1982)

    Google Scholar 

  201. Volmer, M.: Kinetik der Phasenbildung. Th. Steinkopff, Dresden (1939)

    Google Scholar 

  202. Volmer, M., Marder, M.: Z. Phys. Chem. A 154, 97 (1931)

    Google Scholar 

  203. Volmer, M., Weber, A.: Z. Phys. Chem. 119, 227 (1926)

    Google Scholar 

  204. von Smoluchowski, M.: Phys. Z. 17, 557, 585 (1916)

    Google Scholar 

  205. von Smoluchowski, M.: Z. Phys. Chem. 92, 129 (1917)

    Google Scholar 

  206. von Weimarn, P.P.: Chem. Rev. 2, 217 (1926)

    Google Scholar 

  207. Wakeshima, H.: J. Chem. Phys. 22, 1614 (1954)

    ADS  Google Scholar 

  208. Wegener, P.P., Parlange, J.Y.: Naturwissenschaften 57, 525 (1970)

    ADS  Google Scholar 

  209. Woodruff, D.P.: The Solid-Liquid Interface. Cambridge University Press, Cambridge (1973)

    Google Scholar 

  210. Wu, D.T.: J. Chem. Phys. 97, 2644 (1992)

    ADS  Google Scholar 

  211. Yourgreau, W., van der Merwe, A., Raw, G.: Treatise on Irreversible and Statistical Thermophysics. Dover, New York/London (1966)

    Google Scholar 

  212. Zachariasen, W.H.: Phys. Rev. (2), 39, 185 (1932)

    Google Scholar 

  213. Zanotto, E.D., James, P.F.: J. Non Cryst. Solids 74, 373 (1985)

    ADS  Google Scholar 

  214. Zeldovich, Y.B.: Sov. Phys. JETP 12, 525 (1942); Acta Physicochim. USSR 18, 1 (1943)

    Google Scholar 

  215. Zettlemoyer, A.C. (ed.): Nucleation. Marcel Decker, New York (1969)

    Google Scholar 

  216. Zettlemoyer, A.C. (ed.): Nucleation Phenomena. Adv. Colloid Interface Sci. 7 (1977)

    Google Scholar 

  217. Zhuravlev, E., Schmelzer, J.W.P., Wunderlich, B., Schick, C.: Kinetics of Nucleation and Crystallization in Poly(\(\epsilon \)-Caprolactone) (PCL). Polymer 52, 1983–1997 (2011)

    Google Scholar 

  218. Ziabicki, A.: J. Chem. Phys. 48, 4368 (1968)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gutzow, I.S., Schmelzer, J.W.P. (2013). Kinetics of Crystallization and Segregation: Nucleation in Glass-Forming Systems. In: The Vitreous State. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34633-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34633-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34632-3

  • Online ISBN: 978-3-642-34633-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics