Skip to main content

Rheology of Glass-Forming Melts

  • Chapter
  • First Online:
The Vitreous State

Abstract

Rheology, as indicated by its very name (rheos: to flow) is in its classical sense the science describing flow processes of matter, i.e., the displacement of the building units of a substance as a whole or parts of it under the influence of an applied force. The modern interpretation of rheology includes both the meaning as given above as well as the description of relaxation kinetics, i.e., the response of a system after an initially applied stress (or, more generally, after any applied external impact) has ceased to operate. Two approaches have been developed in the rheology of glass-forming melts: (i) A phenomenological approach, based on considerations following from a number of phenomenological models and their combinations; (ii) A microscopic approach involving more or less well-defined molecular model considerations concerning the mechanism of flow. Both approaches and their consequences are analyzed briefly in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam, G., Gibbs, J.H.: J. Chem. Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  2. Adams, L.H.: J. Franklin Inst. 216, 39 (1933)

    Article  Google Scholar 

  3. Alfrey, T.: Mechanical Behaviour of High Polymers. Interscience Publishers, New York (1955)

    Google Scholar 

  4. Anderson, P.W.: Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  5. Avramov, I.: Phys. Stat. Solidi a120, 133 (1990)

    Google Scholar 

  6. Avramov, I.: J. Chem. Phys. 95, 4439 (1991)

    Article  ADS  Google Scholar 

  7. Avramov, I.: J. Mater. Sci. Lett. 13, 1367 (1994)

    Article  Google Scholar 

  8. Avramov, I., Milchev, A.: Fiz. i Khim. Stekla 10, 649 (1984)

    Google Scholar 

  9. Avramov, I., Milchev, A.: J. Non Cryst. Solids 104, 253 (1988)

    Article  ADS  Google Scholar 

  10. Avramov, I., Grantcharova, E., Gutzow, I.: J. Non Cryst. Solids 91, 386 (1987)

    Article  ADS  Google Scholar 

  11. Avramov, I., Grantcharova, E., Gutzow, I.: J. Non Cryst. Solids 104, 148 (1988)

    Article  ADS  Google Scholar 

  12. Bartels, J., Lembke, U., Pascova, R., Schmelzer, J., Gutzow, I.: J. Non Cryst. Solids 136, 181 (1991)

    Article  ADS  Google Scholar 

  13. Bartenev, G.M., Frenkel, S.Y.: Physics of Polymers. Chemistry State Press, Leningrad (1990, in Russian)

    Google Scholar 

  14. Bartenev, G.M., Sanditov, D.S.: Relaxation Processes in Glass-forming Systems. Nauka, Moscow (1986, in Russian)

    Google Scholar 

  15. Beaver, M.B.: Encyclopedia of Materials Science and Engineering. Mechanical Properties of Polymers, vol. 4. Pergamon Press, Oxford (1986)

    Google Scholar 

  16. Bueche, F.: Physical Properties of Polymers. Interscience Publishers, New York (1962)

    Google Scholar 

  17. Calef, D.F., Deutch, J.M.: Ann. Rev. Phys. Chem. 34, 493 (1983)

    Article  ADS  Google Scholar 

  18. Cohen, M., Turnbull, D.: J. Chem. Phys. 59, 3639 (1959)

    Google Scholar 

  19. Dehlinger, U.: Theoretische Metallkunde. Springer, Berlin (1955)

    Book  MATH  Google Scholar 

  20. Doi, M.: J. Polym. Sci. (Polym. Phys.) 18, 1005 (1980)

    Article  ADS  Google Scholar 

  21. Frenkel, Y.I.: The Kinetic Theory of Liquids. Oxford University Press, Oxford (1946)

    Google Scholar 

  22. Freudenthal, A.M.: Inelastic Behaviour of Engineering Materials and Structures. Wiley, New York (1955)

    Google Scholar 

  23. Frischat, G.H.: Ionic Diffusion in Oxide Glasses. Transtech Publications, Aedermannsdorf (1975)

    Google Scholar 

  24. Glasstone, S., Laidler, H.J., Eyring, H.: The Theory of Rate Processes. Princeton University Press, New York/London (1941)

    Google Scholar 

  25. Gul, N.E., Kulesnev, V.N.: In: Structure and Mechanical Properties of Polymers. High School Publishers, Moscow (1966, in Russian)

    Google Scholar 

  26. Gutzow, I., Kashchiev, D., Avramov, I.: J. Non Cryst. Solids 73, 477 (1985)

    Article  ADS  Google Scholar 

  27. Gutzow, I., Dobreva, A., Schmelzer, J.: J. Mater. Sci. 28, 890 (1993)

    Article  ADS  Google Scholar 

  28. Gutzow, I., Dobreva, A., Schmelzer, J.: J. Mater. Sci. 28, 901 (1993)

    Article  ADS  Google Scholar 

  29. Gutzow, I., Pye, D., Dobreva, A.: J. Non Cryst. Solids 180, 107, 117 (1994)

    Google Scholar 

  30. Haase, R.: Thermodynamik der Irreversiblen Prozesse. Verlag D. Steinkopf, Darmstadt (1963)

    Book  Google Scholar 

  31. Hegel, G.W.F.: (1817) Encyclopadie der philosophischen Wissenschaft. Heidelberg. Translated by William Wallace, The Encyclopedia of Philosophical Sciences. Oxford University Press, Oxford (1892)

    Google Scholar 

  32. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York/Chapman and Hall, London (1954)

    MATH  Google Scholar 

  33. Houwink, R.: Elastizität, Plastizität und Struktur der Materie. Verlag Th. Steinkopff, Dresden (1957)

    Google Scholar 

  34. Jenckel, E.: Rheology of non-Newtonion flow. In: Stuart, A.A. (ed.) Die Physik der Hochpolymere, vol. 3, p. 620. Springer, Berlin (1955)

    Google Scholar 

  35. Kohlrausch, F.: Poggendorffs Annalen der Physik und Chem. 8, 332 (1876)

    Google Scholar 

  36. Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M., Ramos, A.R.: J. Polym. Sci. 17(7), 1097 (1979)

    Google Scholar 

  37. Landau, L.D., Lifshitz, E.M.: Mechanics of Continuous Media. Nauka, Moscow (1953, in Russian)

    Google Scholar 

  38. Landau, L.D., Lifschitz, E.M.: Elastizitätstheorie. Akademie-Verlag, Berlin (1976)

    Google Scholar 

  39. Li, J.H., Uhlmann, D.R.: J. Non Cryst. Solids 3, 127 (1970)

    Article  ADS  Google Scholar 

  40. Manning, J.: Diffusion Kinetics for Atoms and Crystals. van Nostrand, Princeton (1968)

    Google Scholar 

  41. Mazurin, O.V.: J. Non Cryst. Solids 25, 130 (1977)

    Article  ADS  Google Scholar 

  42. Mazurin, O.V.: Vitrification. Nauka, Leningrad (1986)

    Google Scholar 

  43. Meixner, J.: Kolloid Z. Z. Polym. 134, 3 (1953)

    Article  Google Scholar 

  44. Meixner, J.: Z. Naturforsch. 9A, 654 (1954)

    ADS  Google Scholar 

  45. Milchev, A., Avramov, I.: Phys. Stat. Solidi b 120, 123 (1983)

    Google Scholar 

  46. Moelwyn-Hughes, E.: Physical Chemistry. Pergamon Press, Oxford (1972)

    Google Scholar 

  47. Morey, G.W.: The Properties of Glass. Reinhold Publishers, New York (1938, 1954)

    Google Scholar 

  48. Ostwald, W.: Kolloid Z. 36, 99 (1925); 47, 176 (1929)

    Google Scholar 

  49. Pascova, R., Gutzow, I., Tomov, I.: J. Mater. Sci. 25, 913 (1990)

    Google Scholar 

  50. Pascova, R., Gutzow, I., Schmelzer, J.: J. Mater. Sci. 25, 921 (1990)

    Google Scholar 

  51. Prandtl, L.: ZAMM 8, 85 (1928)

    Article  MATH  Google Scholar 

  52. Rao, K.J., Angell, C.A.: Thermodynamic and relaxational aspects of a glass-transition from a bond-lattice model. In: Douglas, R.W., Ellis, B. (eds.) Amorphous Materials, Proceedings Third International Conference on Physics of Non-crystalline Solids, Sheffield, 1970, p. 171; Wiley Interscience, New York (1972)

    Google Scholar 

  53. Reiner, M.: Phenomenological Macrorheology. In: Eirich, F.R. (ed.) Rheology, Theory, and Applications, vol. 1, chapter 6, p. 23. Academic, New York (1956)

    Google Scholar 

  54. Rekhson, S.M., Mazurin, O.V.: J. Am. Ceram. Soc. 57, 327 (1974)

    Article  Google Scholar 

  55. Russew, K., Stoyanova, L.: J. Mater. Sci. A 123, 80 (1990)

    Google Scholar 

  56. Sanditov, D.S., Bartenev, G.M.: Physical Properties of Disordered Structures. Nauka, Moscow (1982, in Russian)

    Google Scholar 

  57. Schmelzer, J., Möller, J.: J. Phase Trans. 38, 261 (1992)

    Article  Google Scholar 

  58. Schmelzer, J., Gutzow, I., Pascova, R.: J. Cryst. Growth 104, 505 (1990)

    Article  ADS  Google Scholar 

  59. Schmelzer, J., Pascova, R., Gutzow, I.: Phys. Stat. Solidi a117, 363 (1990)

    Google Scholar 

  60. Sobotka, Z.: Rheology of Materials and Engineering. Academia, Prague (1984)

    Google Scholar 

  61. Stanworth, J.E.: Physical Properties of Glass. Clarendon Press, Oxford (1953)

    Google Scholar 

  62. Tobolsky, A.V.: Properties and Structure of Polymers. Wiley, New York (1960)

    Google Scholar 

  63. Tobolsky, A., Powel, P., Eyring, H.: In: Kargin, V.A. (ed.) The Chemistry of High Polymer Molecules, vol. 2. Inostrannaya Literature Publishers, Moscow (1948, in Russian)

    Google Scholar 

  64. Treloar, L.: The Physics of Rubber Elasticity. Clarendon Press, Oxford (1949)

    Google Scholar 

  65. Volkenstein, M.V.: Configurational Statistics of Polymer Chains. Academy of Sciences USSR Publishing House, Moscow, Leningrad (1959, in Russian)

    Google Scholar 

  66. Volkenstein, M.V., Ptizyn, O.B.: JETF (USSR) 26, 2204 (1956)

    Google Scholar 

  67. Wäsche, R., Brückner, R.: J. Non Cryst. Solids 27, 80 (1968)

    Google Scholar 

  68. Wilkinson, W.L.: Non-Newtonian Fluids. Pergamon Press, New York (1960)

    Google Scholar 

  69. Williamson, E.D., Adams, L.H.: J. Franklin Inst. 190, 597, 835 (1920)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gutzow, I.S., Schmelzer, J.W.P. (2013). Rheology of Glass-Forming Melts. In: The Vitreous State. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34633-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34633-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34632-3

  • Online ISBN: 978-3-642-34633-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics