Skip to main content

On the Recognition of k-Equistable Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7551))

Abstract

A graph G = (V,E) is called equistable if there exist a positive integer t and a weight function \(w:V \longrightarrow \mathbb{N}\) such that S ⊆ V is a maximal stable set of G if and only if w(S) = t. The function w, if exists, is called an equistable function of G. No combinatorial characterization of equistable graphs is known, and the complexity status of recognizing equistable graphs is open. It is not even known whether recognizing equistable graphs is in NP.

Let k be a positive integer. An equistable graph G = (V,E) is said to be k-equistable if it admits an equistable function which is bounded by k. For every constant k, we present a polynomial time algorithm which decides whether an input graph is k-equistable.

MM is supported in part by “Agencija za raziskovalno dejavnost Republike Slovenije”, research program P1–0285 and research projects J1–4010, J1–4021 and N1–0011. Research was partly done during a visit of the second author at the Department of Computer Science and Mathematics at the Ariel University Center of Samaria in the frame of a Slovenian Research Agency project MU-PROM/11-007. The second author thanks the Department for its hospitality and support.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anbeek, C., DeTemple, D., McAvaney, K.L., Robertson, J.M.: When are chordal graphs also partition graphs? Australas. J. Combin. 16, 285–293 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Bagheri Gh., B., Jannesari, M., Omoomi, B.: Uniquely dimensional graphs, arXiv:1205.0327v1

    Google Scholar 

  3. Berry, A., Bordat, J.-P.: Separability generalizes Dirac’s theorem. Discrete Appl. Math. 84, 43–53 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berry, A., Sigayret, A.: Representing a concept lattice by a graph. Discrete Appl. Math. 144, 27–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berry, A., SanJuan, E., Sigayret, A.: Generalized domination in closure systems. Discrete Appl. Math. 154, 1064–1084 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bui-Xuan, B.-M., Suchý, O., Telle, J.A., Vatshelle, M.: Feedback vertex set on graphs of low cliquewidth. European J. of Combinatorics (2011) (accepted for publication)

    Google Scholar 

  7. Cournier, A., Habib, M.: A New Linear Algorithm of Modular Decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  8. DeTemple, D., Dineen, M.J., Robertson, J.M., McAvaney, K.L.: Recent examples in the theory of partition graphs. Discrete Math. 113, 255–258 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. DeTemple, D., Harary, F., Robertson, J.M.: Partition graphs. Soochow J. Math. 13, 121–129 (1987)

    MathSciNet  MATH  Google Scholar 

  10. DeTemple, D., Robertson, J.M.: Constructions and the realization problem for partition graphs. J. Combin. Inform. System Sci. 13, 50–63 (1988)

    MathSciNet  MATH  Google Scholar 

  11. DeTemple, D., Robertson, J.M.: Graphs associated with triangulations of lattice polygons. J. Austral. Math. Soc. Ser. A 47, 391–398 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. DeTemple, D., Robertson, J.M., Harary, F.: Existential partition graphs. J. Combin. Inform. System Sci. 9, 193–196 (1984)

    MathSciNet  MATH  Google Scholar 

  13. Feder, T., Hell, P.: On realizations of point determining graphs, and obstructions to full homomorphisms. Discrete Math. 308, 1639–1652 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Figueiredo, C.M.H., Meidanis, J., de Mello, C.P.: A linear-time algorithm for proper interval graph recognition. Inform. Process. Lett. 56, 179–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Habib, M., Paul, C.: A simple linear time algorithm for cograph recognition. Discrete Applied Math. 145, 183–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heggernes, P., Meister, D., Papadopoulos, C.: Graphs of linear clique-width at most 3. Theoret. Comput. Sci. 412, 5466–5486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kloks, T., Lee, C.-M., Liu, J., Müller, H.: On the Recognition of General Partition Graphs. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 273–283. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Korach, E., Peled, U.N.: Equistable series-parallel graphs. Stability in Graphs and Related Topics. Discrete Appl. Math. 132, 149–162 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Korach, E., Peled, U.N., Rotics, U.: Equistable distance-hereditary graphs. Discrete Appl. Math. 156, 462–477 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Levit, V.E., Milanič, M.: Equistable simplicial, very well-covered, and line graphs (2011) (submitted for publication)

    Google Scholar 

  21. Lin, G.-H., Jiang, T., Kearney, P.E.: Phylogenetic k-Root and Steiner k-Root. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Lozin, V., Milanič, M.: On the maximum independent set problem in subclasses of planar graphs. Journal of Graph Algorithms and Applications 14, 269–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mahadev, N.V.R., Peled, U.N., Sun, F.: Equistable graphs. J. Graph Theory 18, 281–299 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. McAvaney, K.L., Robertson, J.M., DeTemple, D.: A characterization and hereditary properties for partition graphs. Discrete Math. 113, 131–142 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37, 93–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Miklavič, Š., Milanič, M.: Equistable graphs, general partition graphs, triangle graphs, and graph products. Discrete Appl. Math. 159, 1148–1159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Milanič, M., Rudolf, G.: Structural results for equistable graphs and related graph classes. RUTCOR Research Report, 25-2009

    Google Scholar 

  29. Milanič, M., Orlin, J., Rudolf, G.: Complexity results for equistable graphs and related classes. Ann. Oper. Res. 188, 359–370 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Maximum cliques in graphs with small intersection number and random intersection graphs. arXiv:1204.4054v1

    Google Scholar 

  31. Orlovich, Y.L., Blazewicz, J., Dolgui, A., Finke, G., Gordon, V.S.: On the complexity of the independent set problem in triangle graphs. Discrete Math. 311, 1670–1680 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Orlovich, Y.L., Zverovich, I.E.: Independent domination in triangle graphs. 6th Czech-Slovak International Symposium on Combinatorics, Graph Theory, Algorithms and Applications. In: 6th Czech-Slovak International Symposium on Combinatorics, Graph Theory, Algorithms and Applications, Electron. Notes Discrete Math., vol. 28, pp. 341–348 (2007)

    Google Scholar 

  33. Payan, C.: A class of threshold and domishold graphs: equistable and equidominating graphs. Discrete Math. 29(1), 47–52 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Peled, U.N., Rotics, U.: Equistable chordal graphs. Stability in Graphs and Related Topics. Discrete Appl. Math. 132, 203–210 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press, New York (1969)

    Google Scholar 

  36. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levit, V.E., Milanič, M., Tankus, D. (2012). On the Recognition of k-Equistable Graphs. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2012. Lecture Notes in Computer Science, vol 7551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34611-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34611-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34610-1

  • Online ISBN: 978-3-642-34611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics