Skip to main content

Fault Tolerant Additive Spanners

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7551))

Included in the following conference series:

Abstract

Graph spanners are sparse subgraphs that preserve the distances of the original graph, up to some small multiplicative factor or additive term (known as the stretch of the spanner). A number of algorithms are known for constructing sparse spanners with small multiplicative or additive stretch. Recently, the problem of constructing fault-tolerant multiplicative spanners for general graphs was given some algorithms. This paper addresses the analogous problem of constructing fault tolerant additive spanners for general graphs.

We establish the following general result. Given an n-vertex graph G, if H 1 is an ordinary additive spanner for G with additive stretch α, and H 2 is a fault tolerant multiplicative spanner for G, resilient against up to f edge failures, with multiplicative stretch μ, then H = H 1 ∪ H 2 is an additive fault tolerant spanner of G, resilient against up to f edge failures, with additive stretch \(O(\tilde{f}(\alpha+\mu))\) where \(\tilde{f}\) is the number of failures that have actually occurred \((\tilde{f}\leq f)\).

This allows us to derive a poly-time algorithm \({\texttt Span}^{f-t}_{add}\) for constructing an additive fault tolerant spanner H of G, relying on the existence of algorithms for constructing fault tolerant multiplicative spanners and (ordinary) additive spanners. In particular, based on some known spanner construction algorithms, we show how to construct for any n-vertex graph G an additive fault tolerant spanner with additive stretch \(O(\tilde{f})\) and size O(fn 4/3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In: Proc. IEEE Symp. on Foundations of Computer Science (FOCS), pp. 591–602 (2006)

    Google Scholar 

  4. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (α, β)-spanners. ACM Trans. on Algo. 7, A.5 (2010)

    MathSciNet  Google Scholar 

  5. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for general graphs. In: Proc. 41st ACM Symp. on Theory of Computing (STOC), pp. 435–444 (2009)

    Google Scholar 

  6. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discrete & Computational Geometry 32, 2004 (2003)

    MathSciNet  Google Scholar 

  7. Dinitz, M., Krauthgamer, R.: Fault-Tolerant Spanners: Better and Simpler. In: 30th ACM Symp. on Principles of Distributed Computing (PODC), pp. 169–178 (2011)

    Google Scholar 

  8. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Computing 29(5), 1740–1759 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elkin, M., Peleg, D.: (1 + ε, β)-spanner constructions for general graphs. SIAM J. Computing 33(3), 608–631 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farley, A.M., Proskurowski, A., Zappala, D., Windisch, K.: Spanners and message distribution in networks. Discrete Applied Mathematics 137(2), 159–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Levcopoulos, C., Narasimhan, G., Smid, M.: Efficient algorithms for constructing fault-tolerant geometric spanners. In: Proc. 30th ACM Symp. on Theory of Computing (STOC), pp. 186–195 (1998)

    Google Scholar 

  12. Lukovszki, T.: New Results on Fault Tolerant Geometric Spanners. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 193–204. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Computing 18(2), 740–747 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pettie, S.: Low distortion spanners. ACM Transactions on Algorithms 6(1) (2009)

    Google Scholar 

  16. Roditty, L., Thorup, M., Zwick, U.: Deterministic Constructions of Approximate Distance Oracles and Spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 1–10 (2001)

    Google Scholar 

  18. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: 17th Symp. on Discrete Algorithms (SODA), pp. 802–809. ACM-SIAM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Braunschvig, G., Chechik, S., Peleg, D. (2012). Fault Tolerant Additive Spanners. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2012. Lecture Notes in Computer Science, vol 7551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34611-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34611-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34610-1

  • Online ISBN: 978-3-642-34611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics