• Richard Gaggl
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 39)


In general, A/D-converters are divided into two broad categories: Nyquist-rate converters and over-sampling converters. These different converter classes typically offer different compromises between ADC resolution and output sampling rate. Nyquist-rate converters are those that operate at a minimum sampling frequency necessary to capture all the information about the entire input bandwidth. Three of the most popular Nyquist-rate converter architectures are SAR (successive approximation register), flash and pipeline ADCs. Basically, Nyquist-rate converters are used in open-loop configuration without any global feedback. A constant input during the conversion process usually is provided in each stage by a sample-and-hold (SHA) circuit. The first-stage SHA must maintain the accuracy of the overall ADC at the full sampling rate, requiring the circuit to settle within a single clock period. In contrast, oversampled delta-sigma A/D-converters do not require highly accurate settling circuits as compared to Nyquiste-rate converters and thus avoid the increased power drain and need for high-performance drivers in high-resolution applications. This advantage comes mainly from the global feedback structure providing noise-shaping in the frequency domain at the expense of a limited band-of-interest defined by the Over-Sampling Ratio (OSR). Nevertheless, CT delta-sigma modulators may also include significant anti-aliasing filtering, reducing or eliminating the need for an additional anti-aliasing-filter. Finally, CT delta-sigma technology is well-suited for migration to future CMOS processes.


Technology Node Excess Loop Delay Successive Approximation Register Analog Bandwidth Output Sampling Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 4.
    A. Wiesbauer, H. Weinberger, M. Clara, J. Hauptmann, A 13.5-bit cost optimized multi-bit delta-sigma ADC for ADSL, in Proceedings of the 25th ESSCIRC (1999), pp. 82–88 Google Scholar
  2. 6.
    B. Verbruggen, M. Iriguchi, J. Craninckx, A 1.7 mW 11b 250 MS/s 2x interleaved fully dynamic pipelined SAR ADC in 40 nm digital CMOS, in IEEE ISSCC Proceedings (2012), pp. 466–467 Google Scholar
  3. 11.
    E. Prefasi, L. Hernandez, S. Paton, A. Wiesbauer, R. Gaggl, E. Pun, A 0.1 mm2, wide bandwidth continuous-time ΔΣ ADC based on a time encoding quantizer in 0.13 μm CMOS. IEEE J. Solid-State Circuits 44(10), 2745–2754 (2009) CrossRefGoogle Scholar
  4. 13.
    F. Esfahani, Ph. Basedau, R. Ryter, R. Becker, A fourth order continuous-time complex sigma-delta ADC for low-IF GSM and EDGE receivers, in Symposium on VLSI Circuits Digest of Technical Papers (2003), pp. 75–78 Google Scholar
  5. 15.
    G. Mitteregger, Ch. Ebner, St. Mechnig, Th. Blon, Ch. Holuige, E. Romani, A 20-mW 640-MHz CMOS continuous-time ΣΔ ADC with 20 MHz signal bandwidth, 80-dB dynamic-range and 12-bit ENOB. IEEE J. Solid-State Circuits 41(12), 2641–2649 (2006) CrossRefGoogle Scholar
  6. 16.
    G. Taylor, I. Galton, A mostly-digital variable-rate continuous-time delta-sigma modulator ADC. IEEE J. Solid-State Circuits 45(12), 2634–2646 (2010) CrossRefGoogle Scholar
  7. 20.
    J. Fredenburg, M. Flynn, A 90 MS/s 11 MHz bandwidth 62 dB SNDR noise-shaping SAR ADC, in IEEE ISSCC Proceedings (2012), pp. 468–469 Google Scholar
  8. 21.
    J. Maeyer, P. Rombouts, L. Weyten, A double-sampling extended-counting ADC. IEEE J. Solid-State Circuits 39(03), 411–418 (2004) CrossRefGoogle Scholar
  9. 22.
    J. Yu, F. Maloberti, A low-power multi-bit ΣΔ modulator in 90-nm digital CMOS without DEM. IEEE J. Solid-State Circuits 40(12), 2428–2436 (2005) CrossRefGoogle Scholar
  10. 25.
    K. Reddy, S. Rao, R. Inti, B. Young, A. Elshazly, M. Talegaonkar, P.K. Hanumolu, A 16 mW 78 dB-SNDR 10 MHz-BW CT ΔΣ ADC using residue-cancelling VCO-based quantizer, in IEEE ISSCC Proceedings (2012), pp. 152–153 Google Scholar
  11. 26.
    K. Reddy, Sh. Pavan, A 20.75 mW continuous-time ΔΣ modulator with 15 MHz bandwidth and 70 dB dynamic range, in Proceedings of the 34th ESSCIRC (2008), pp. 210–213 Google Scholar
  12. 28.
    K. Matsukawa, Y. Mitani, M. Takayama, K. Obata, S. Dosho, A. Matsuzawa, A fifth-order continuous-time delta-sigma modulator with single-OpAmp resonator. IEEE J. Solid-State Circuits 45(4), 697–706 (2010) CrossRefGoogle Scholar
  13. 29.
    L. Breems, R. Rutten, R. Veldhoven, G. Weide, H. Termeer, A 56 mW CT quadrature cascaded ΣΔ modulator with 77 dB DR in a near zero-IF 20 MHz band, in IEEE ISSCC Proceedings (2007), pp. 238–239 Google Scholar
  14. 30.
    L. Doerer, Continuous time ΣΔ-3rd order multibit (4bit) for 802.11n applications (WLAN11n). Technical report, Infineon, Austria, Villach, 2008; internal report of Infineon Austria Google Scholar
  15. 33.
    M. Kappes, H. Jensen, T. Gloerstad, A versatile 1.75 mW CMOS continuous-time delta-sigma ADC with 75 dB dynamic range for wireless applications, in Proceedings of the 28th ESSCIRC (2002) Google Scholar
  16. 34.
    M. Miller, C. Petrie, A multibit sigma-delta ADC for multimode receivers. IEEE J. Solid-State Circuits 38(03), 475–482 (2003) CrossRefGoogle Scholar
  17. 36.
    M. Straayer, M. Perrott, A 12-bit, 10-MHz bandwidth, continuous-time ΣΔ ADC with a 5-bit, 950-MS/s VCO-based quantizer. IEEE J. Solid-State Circuits 43(4), 805–814 (2008) CrossRefGoogle Scholar
  18. 37.
    M. Bolatkale, L.J. Breems, R. Rutten, K.A.A. Makinwa, A 4 GHz continuous-time ΔΣ ADC with 70 db DR and 74 dBFS THD in 125 MHz BW. IEEE J. Solid-State Circuits 46(12), 2857–2868 (2011) CrossRefGoogle Scholar
  19. 39.
    N. Yaghini, D. Johns, A 43 mW CT complex ΔΣ ADC with 23 MHz of signal bandwidth and 68.8 dB SNDR, in IEEE ISSCC Proceedings (2005), pp. 502–503 Google Scholar
  20. 40.
    O. Oliaei, P. Clement, Ph. Gorisse, A 5 mW ΣΔ-modulator with 84 dB dynamic range for GSM/EDGE, in IEEE ISSCC Proceedings (2001) Google Scholar
  21. 41.
    P. Malla, H. Lakdawala, K. Kornegay, K. Soumyanath, A 28 mW spectrum-sensing reconfigurable 20 MHz 72 dB-SNR 70 dB-SNDR DT ΔΣ ADC for 802.11n/WiMAX receivers, in IEEE ISSCC Proceedings (2008), pp. 496–497 Google Scholar
  22. 43.
    P. Shettigar, S. Pavan, A 15 mW 3.6 GS/s CT-ΔΣ ADC with 36 MHz bandwidth and 83 dB DR 90 nm CMOS, in IEEE ISSCC Proceedings (2012), pp. 156–157 Google Scholar
  23. 44.
    P. Witte, J.G. Kauffman, J. Becker, Y. Manoli, M. Ortmanns, A 72 dB-DR ΔΣ CT modulator using digitally estimated auxiliary DAC linearization achieving 88 fJ/conv in a 25 MHz BW, in IEEE ISSCC Proceedings (2012), pp. 154–155 Google Scholar
  24. 47.
    R. Gaggl, A. Wiesbauer, G. Fritz, Ch. Schranz, P. Pessl, A 85-dB dynamic range multibit delta-sigma ADC for ADSL-CO applications in 0.18 μm CMOS. IEEE J. Solid-State Circuits 38(7), 1105–1114 (2003) CrossRefGoogle Scholar
  25. 48.
    R. Gaggl, M. Inversi, A. Wiesbauer, A power optimized 14-bit SC ΔΣ modulator for ADSL CO applications, in IEEE ISSCC Proceedings (2004), pp. 82–83 Google Scholar
  26. 50.
    R. Schoofs, Design of High-Speed Continuous-Time Delta-Sigma A/D Converters for Broadband Communication (Katholieke Universiteit Leuven, Belgium, 2007). ISBN 978-90-5682-845-5 Google Scholar
  27. 51.
    R. Schoofs, M. Steyaert, W. Sansen, A 1 GHz continuous-time sigma-delta A/D converter in 90 nm standard CMOS, in IEEE MTT-S Tech. Dig. (2005), pp. 1287–1290 Google Scholar
  28. 52.
    R. Schoofs, M. Steyaert, W. Sansen, A design-optimized continuous-time delta-sigma ADC for WLAN applications. IEEE Trans. Circuits Syst. I, Regul. Pap. 54(1), 209–217 (2007) CrossRefGoogle Scholar
  29. 55.
    S. Kulchycki, R. Trofin, K. Vleugels, B. Wooley, A 77-dB dynamic range, 7.5-MHz hybrid continuous-time/discrete-time cascaded ΣΔ modulator. IEEE J. Solid-State Circuits 43(4), 796–804 (2008) CrossRefGoogle Scholar
  30. 59.
    S. Ouzounov, R. Veldhoven, C. Bastiaansen, K. Vongehr, R. Wegberg, G. Geelen, L. Breems, A. Roermund, A 1.2 V 121-mode CT ΔΣ modulator for wireless receivers 90 nm CMOS, in IEEE ISSCC Proceedings (2007), p. 242 Google Scholar
  31. 61.
    S. Paton, A. Giandomenico, L. Hernandez, A. Wiesbauer, Th. Poetscher, M. Clara, A 70-mW 300-MHz CMOS continuous-time sigma-delta ADC with 15-MHz bandwidth and 11 bits of resolution. IEEE J. Solid-State Circuits 39(7), 1056–1063 (2004) CrossRefGoogle Scholar
  32. 63.
    St. Henzler, S. Koeppe, D. Lorenz, W. Kamp, R. Kuenemund, D. Schmitt-Landsiedel, A local passive time interpolation concept for variation-tolerant high-resolution time-to-digital conversion. IEEE J. Solid-State Circuits 43(7), 1666–1676 (2008) CrossRefGoogle Scholar
  33. 66.
    Th. Burger, Q. Huang, A 13.5 mW, 185 M sample/s ΔΣ-modulator for UMTS/GSM dual-standard IF reception, in IEEE ISSCC Proceedings (2001) Google Scholar
  34. 67.
    Th. Christen, Q. Huang, A 0.13 μm CMOS 0.1–20 MHz bandwidth 86–70 db DR multi-mode DT ΔΣ ADC for IMT-advanced, in Proceedings of the 36th ESSCIRC (2010), pp. 414–417 CrossRefGoogle Scholar
  35. 68.
    Th. Christen, Th. Burger, Q. Huang, A 0.13 μm CMOS EDGE/UMTS/WLAN tri-mode ΔΣ ADC with −92 dB THD, in IEEE ISSCC Proceedings (2007), pp. 240–241 Google Scholar
  36. 69.
    V. Srinivasan, V. Wang, P. Satarzadeh, B. Haroun, M. Corsi, A 20 mW 61 dB SNDR (60 MHz BW) 1b 3rd-order continuous-time delta-sigma modulator clocked at 6 GHz in 45 nm CMOS, in IEEE ISSCC Proceedings (2012), pp. 158–159 Google Scholar
  37. 70.
    V. Dhanasekaran, M. Gambhir, M.M. Elsayed, E. Sánchez-Sinencio, J. Silva-Martinez, C. Mishra, L. Chen, E.J. Pankratz, A continuous time multi-bit ΔΣ ADC using time domain quantizer and feedback element. IEEE J. Solid-State Circuits 46(3), 639–650 (2011) CrossRefGoogle Scholar
  38. 74.
    W. Yang, W. Schofield, H. Shibata, S. Korrapati, A. Shaikh, N. Abaskharoun, D. Ribner, A 100 mW 10 MHz-BW CT ΔΣ modulator with 87 dB DR and 91 dBc IMD, in IEEE ISSCC Proceedings (2008), pp. 498–499 Google Scholar
  39. 78.
    Y. Shu, B. Song, K. Bacrania, A 65 nm CMOS ΔΣ modulator with 81 dB DR and 8 MHz BW auto-tuned by pulse injection, in IEEE ISSCC Proceedings (2008), pp. 500–501 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Richard Gaggl
    • 1
  1. 1.Design Center VillachInfineon TechnologiesVillachAustria

Personalised recommendations