Skip to main content

Progress on Enzymatic Saccharification Technologies for Biofuels Production

  • Chapter
  • First Online:
Biofuel Technologies

Abstract

A key issue for the biorefineries is the cost-effective conversion of carbohydrates contained in lignocellulosic biomass into fermentable sugars, which will provide a viable route to biofuels and bioproducts. Many different raw materials, conversion methods, and process configurations have been studied for the generation of sugars from lignocellulosic biomass. Most of the schemes for lignocellulosic biomass conversion include a pretreatment step to increase digestibility of the substrates and an enzymatic hydrolysis process, which is a crucial step and determines the overall process efficiency. Due to lignocellulose complex structure, different enzymes are involved in the degradation of the substrates and appropriate combinations of different activities are required for complete hydrolysis. This chapter reviews novel advances in enzymatic hydrolysis technologies for lignocellulose conversion, with special focus on the necessity of optimized enzyme mixtures using accessory activities, and the advantages of operating at high initial substrate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal P, Verma D, Daniell H (2011) Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis. PLOS ONE 6(12):e29302. doi:10.1371/journal.pone.0029302

    Article  PubMed  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  PubMed  CAS  Google Scholar 

  • Alvira P, Negro MJ, Ballesteros M (2011a) Effect of endoxylanase and alpha-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol 102:4552–4558

    Article  PubMed  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Negro MJ, Ballesteros M (2011b) Strategies of xylanase supplementation for an efficient saccharification and cofermentation process from pretreated wheat straw. Biotechnol Prog 27:944–950

    Article  CAS  Google Scholar 

  • Andric P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Effect and modelling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw. Appl Biochem Biotechnol 160:280–297

    Article  PubMed  CAS  Google Scholar 

  • Bajpai P (2004) Biological bleaching of chemical pulps. Crit Rev Biotechnol 24:1–58

    Article  PubMed  CAS  Google Scholar 

  • Baker JO, King MR, Adney WS, Decker SR, Vinzant TB, Lantz SE, Nieves RE, Thomas SR, Li LC, Cosgrove DJ, Himmel ME (2000) Investigation of the cell-wall loosening protein expansin as a possible additive in the enzymatic saccharification of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:217–223

    Article  PubMed  Google Scholar 

  • Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 130:496–508

    Article  Google Scholar 

  • Ballesteros I, Negro MJ, Oliva JM, Sáez F, Manzanares P, Ballesteros M (2011) Increased ethanol concentration in saccharification and fermentation media of steam-exploded cereal straw. XIX. In: International symposium on alcohol fuels (ISAF), Development and utilization of alcohols fuels, to promote sustainability

    Google Scholar 

  • Ballesteros I, Oliva JM, Carrasco JE, Ballesteros M (1994) Effect of media supplementation of ethanol production by simultaneous saccharification and fermentation process. Appl Biochem Biotechnol 45–46:283–294

    Article  Google Scholar 

  • Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M (2002) Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis. World J Microb Biot 18(6):559–561

    Article  CAS  Google Scholar 

  • Ballesteros M (2010) Enzymatic hydrolysis of lignocellulosic biomass. In: Waldron K (ed) Bioalcohol production. Biochemical conversion of lignocellulosic biomass. Woodhead Publishing, UK, pp 159–177

    Chapter  Google Scholar 

  • Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenerg Res 3:82–92

    Article  Google Scholar 

  • Bayer EA, Henrissat B, Lamed R (2008) The cellulosome: a natural bacterial strategy to combat biomass recalcitrance. In: Himmel ME (ed) Biomass recalcitrance. Deconstructing the plant cell wall for bioenergy. Blackwell Publishing, USA, pp 407–435

    Chapter  Google Scholar 

  • Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  PubMed  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  PubMed  CAS  Google Scholar 

  • Benko Z, Siika-aho M, Viikari L, Réczey K (2008) Evaluation of the role of xyloglucanase in the enzymatic hydrolysis of lignocellulosic substrates. Enzyme Microb Technol 43:109–114

    Article  CAS  Google Scholar 

  • Berlin A, Gilkes N, Kilburnn D, Bura R, Markov A, Okunev O, Gusarov A, Maximenko V, Gregg D, Saddler J (2005) Evaluation of novel fungal cellulase prepration for ability to hydrolyze softwood substrate-evidence of the role of accessory enzymes. Enzyme Microb Technol 37:175–184

    Article  CAS  Google Scholar 

  • Berlin AB, Maximenko V, Gilkes N, Saddler J (2006) Optimization of enzymes complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97(2):287–296

    Article  CAS  Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  PubMed  CAS  Google Scholar 

  • Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    CAS  Google Scholar 

  • Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng/Biotechnol 108:67–93

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  PubMed  CAS  Google Scholar 

  • Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647–652

    Article  PubMed  CAS  Google Scholar 

  • Dahlman O, Jacobs A, Berg J (2003) Molecular properties of hemicelluloses located in the surface and inner layers of hardwood and softwood pulps. Cellulose 10:325–334

    Article  CAS  Google Scholar 

  • Decker SR, Siika-Aho M, Viikari L (2008) Enzymatic depolymerization of plant cell wall hemicellulases. In: Himmel ME (ed) Biomass Recalcitrance. Deconstructing the Plant Cell Wall for Bioenergy. Blackwell Publishing, USA, pp 407–435

    Google Scholar 

  • Dias AA, Freitas GS, Marques GSM, Sampaio A, Fraga IS, Rodrigues MAM, Evtuguin DV, Bezerra RMF (2010) Enzymatic saccharification of biologically pretreated wheat straw with white-rot fungi. Bioresour Technol 101:6045–6050

    Article  PubMed  CAS  Google Scholar 

  • DOE. US Department of Energy (2003) Energy information agency. Available from: http://www.exxonmobil.com/corportae/energy_outlook.aspx

  • Eriksson T, Karlsson J, Tjerneld F (2002) A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel 7A) and endoglucanase I (Cel7B) of Trichoderma reesei. Appl Biochem Biotechnol 101:41–60

    Article  PubMed  CAS  Google Scholar 

  • Esteghlalian AR, Svivastava V, Gilkes N, Gregg DJ, Saddler JN (2001) An overview of factors influencing the enzymatic hydrolysis of lignocellulosic feedstocks. In: Himmel ME, Baker W, Saddler JN (eds) Glycosyl hydrolases for biomass conversion. ACS, USA, pp 100–111

    Google Scholar 

  • Faulds CB, Mandalari G, Curco RB, Bisignano G, Christakopoulos P, Waldron KW (2006) Synergy between xylanases from glycoside hydrolase family 10 and family 11 and a feruloyl esterase in the release of phenolic acids from cereal arabinoxylan. Appl Microbiol Biotechnol 71:622–629

    Article  PubMed  CAS  Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997

    Article  PubMed  Google Scholar 

  • García-Aparicio MP, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ (2006) Effect of inhibitors release during steam-explosion pretreatement of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278–288

    Article  PubMed  Google Scholar 

  • García-Aparicio MP, Ballesteros M, Manzanares P, Ballesteros I, González A, Negro MJ (2007) Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Biochem Biotechnol 136–140:353–366

    Article  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  PubMed  CAS  Google Scholar 

  • Guillén F, Martínez AT, Martínez MJ (1992) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem 209:603–611

    Article  PubMed  Google Scholar 

  • Guillén F, Martínez MJ, Muñoz C, Martínez AT (1997) Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch Biochem Biophys 339:190–199

    Article  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  CAS  Google Scholar 

  • Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316

    Article  PubMed  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequences-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  PubMed  CAS  Google Scholar 

  • Himmel ME, Andey WS, Baker JO, Nieves RA, Thomas SR (1996) Cellulases: structure, function, and applications. In: Wyman CE (ed) Handbook on bioethanol production and utilization. Taylor and Francis, UK, pp 143–161

    Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  PubMed  CAS  Google Scholar 

  • Himmel ME, Picataggio SK (2008) Our challenge is to acquire deeper understanding of biomass recalcitrance and conversion. In: Himmel ME (ed) Biomass recalcitrance. Deconstructing the Plant Cell Wall for Bioenergy. Blackwell Publishing, USA, pp 1–6

    Chapter  Google Scholar 

  • Hodge DB, Karim MN, Schell DJ, McMillan JD (2009) Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl Biochem Biotechnol 152(1):88–107

    Article  PubMed  CAS  Google Scholar 

  • Hoyer K, Galbe M, Zacchi G (2010) Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter. Biotechnol Biofuels 3:14

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Lau MW, Balan V, Dale BE (2010) Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresour Technol 101:8171–8178

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen H (2009) Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by saccharomyces cerevisiae. Appl Biochem Biotechnol 153:44–57

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007a) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuel Bioprod Bior 1:119–134

    Article  CAS  Google Scholar 

  • Jørgensen H, Olsson L (2006) Production of cellulases by Penicillium brasilianum IBT 20888-Effect of substrate on hydrolytic performance. Enzyme Microb Technol 38:381–390

    Article  CAS  Google Scholar 

  • Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007b) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870

    Article  PubMed  CAS  Google Scholar 

  • Juhász T, Szengyel Z, Réczey K, Siika-Aho M, Viikari L (2005) Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 40:3519–3525

    Article  CAS  Google Scholar 

  • Jurado M, Prieto A, Martínez-Alcalá A, Martínez AT, Martínez MJ (2009) Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol 100:6378–6384

    Article  PubMed  CAS  Google Scholar 

  • Jönsson JL, Palmqvist E, Nilvebrant N-O, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697

    Article  Google Scholar 

  • Kalyani D, Dhiman SS, Kim H, Jeya M, Kim I-W, Lee J-K (2012) Characterization of a novel laccase from the isolated Coltricia perennis and its application to detoxification of biomass. Process Biochem 47:671–678

    Article  CAS  Google Scholar 

  • Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Proc Natl Acad Sci USA 87:2936–2940

    Article  PubMed  CAS  Google Scholar 

  • Kolb M, Sieber V, Amann M, Faulstich M, Schieder D (2012) Removal of monomer delignification products by laccase from Trametes versicolor. Bioresourc Technol 104:298–304

    Article  CAS  Google Scholar 

  • Kovacs K, Macrelli S, Szakacs G, Zacchi G (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma viride enzymes produced in-house. Biotechnol Biofuels 2:14

    Article  PubMed  CAS  Google Scholar 

  • Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2(1):11

    Article  PubMed  CAS  Google Scholar 

  • Kubicek CP (1992) The cellulase proteins of Trichoderma reesei: structure, multiplicity, mode of action and regulation of formation. Adva Biochem Eng 45:1–27

    CAS  Google Scholar 

  • Kuhar S, Nair LM, Kuhad RC (2008) Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can J Microbiol 54:305–313

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Kumar R, Wyman CE (2008) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 102(2):457–467

    Article  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009a) Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresour Technol 100:4193–4202

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009b) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009c) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314

    Article  PubMed  CAS  Google Scholar 

  • Kurasin M, Väljamäe P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286:169–177

    Article  PubMed  CAS  Google Scholar 

  • Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 121:1081–1099

    Article  PubMed  Google Scholar 

  • Larsson S, Cassland P, Jönsson LF (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic compounds inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Wang Y, Xu G, Chu J, Zhuang Y, Zhang S (2010) Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Appl Biochem Biotechnol 160:360–369

    Article  PubMed  CAS  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  PubMed  CAS  Google Scholar 

  • Manzanares P, Negro MJ, Oliva JM, Saéz F, Ballesteros I, Ballesteros M, Cara C, Castro E, Ruiz E (2011) Different process configurations for bioethanol production from pretreated olive pruning biomass. J Chem Technol Biotechnol 86(6):881–887

    Article  CAS  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enz Microb Technol 30:425–444

    Article  Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: Microbiological, chemical and enzymatic aspects of fungal attack to lignin. Intern Microbiol 8:195–204

    Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, De Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnol 26:553–560

    Article  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochem 60:551–565

    Article  CAS  Google Scholar 

  • Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59(5):621–634

    Article  PubMed  CAS  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    PubMed  CAS  Google Scholar 

  • Moilanen U, Kellock M, Galkin S, Viikari L (2011) The laccase-catalyzed modification of lignin for enymatic hydrolysis. Enzyme Microb Technol 49:492–498

    Article  PubMed  CAS  Google Scholar 

  • Moreno AD, Ibarra D, Fernández JL, Ballesteros M (2012) Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour Technol 106:101–109

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay M, Kuila A, Tuli D, Banerjee R (2011) Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass Bioenerg 35:3584–3591

    Article  CAS  Google Scholar 

  • Mosier N, Wyman CE, Dale BD, Elander RT, Lee YY, Holtzapple M, Ladisch CM (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Numan MT, Bhosle NB (2006) Alpha-L-arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260

    Article  PubMed  CAS  Google Scholar 

  • Öhgren K, Rudolf A, Galbe M, Zacchi G (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenerg 30:863–869

    Article  CAS  Google Scholar 

  • Oliva JM, Ballesteros I, Negro MJ, Manzanares P, Cabañas A, Ballesteros M (2004) Effect of binary combinations of selected toxic compounds on growth and fermentation of Kluyveromyces marxianus. Biotechnol Prog 20:715–720

    Article  PubMed  CAS  Google Scholar 

  • Oliva JM, Saez F, Ballesteros I, González A, Negro MJ, Manzanares P, Ballesteros M (2003) Effect of lignocellulosic degradation compounds in the steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 105–108:141–153

    Article  PubMed  Google Scholar 

  • Olsson L, Soerensen HR, Dam BP, Christensen H, Krogh KM, Meyer AS (2006) Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 129–132:117–129

    Google Scholar 

  • Olsson L, Jørgensen H, Krogh KBR, Roca C (2004) Bioethanol production from lignocellulosic material. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. CRC Press, USA, pp 957–993

    Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanism of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Palonen H, Viikari L (2004) Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng 86:550–557

    Article  PubMed  CAS  Google Scholar 

  • Pan XJ, Gilkes N, Saddler JN (2006) Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Olzforschung 60:398–401

    CAS  Google Scholar 

  • Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 124:1069–1079

    Article  Google Scholar 

  • Panagiotou G, Olsson L (2007) Effect of compounds released during pre-treatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng 96:250–258

    Article  PubMed  CAS  Google Scholar 

  • Pérez JA, Ballesteros I, Ballesteros M, Sáez F, Negro MJ, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647

    Article  CAS  Google Scholar 

  • Persson I, Tjerneld F, Hahn-Hägerdal B (1991) Fungal cellulolytic enzyme production: a review. Process Biochem 26:65–74

    Article  CAS  Google Scholar 

  • Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and indusrtial applications. Appl Microbiol Biotechnol 67(5):577–591

    Article  PubMed  CAS  Google Scholar 

  • Poutanen K, Puls J (1989) The xylanolytic enzyme system of Trichoderma reesei. In: Lewis G, Paice M (eds) Biogenesis and biodegradation of plant cell wall polymers. ACS, USA, pp 630–640

    Chapter  Google Scholar 

  • Qi B, Chen X, Su Y, Wan Y (2011) Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose. Bioresour Technol 102:2881–2889

    Article  PubMed  CAS  Google Scholar 

  • Qi B, Luo J, Chen G, Chen X, Wan Y (2012) Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolyzate of steam exploded wheat straw. Bioresour Technol 104:466–472

    Article  PubMed  CAS  Google Scholar 

  • Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630

    Article  PubMed  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  PubMed  CAS  Google Scholar 

  • Raweesri P, Riangrungrojana P, Pinphanichakarn P (2008) Alpha-L-arabinofuranosidase from Streptomyces sp. PC22: purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Bioresour Technol 99:8981–8986

    Article  PubMed  CAS  Google Scholar 

  • Rémond C, Aubry N, Crônier D, Noël S, Martel F, Roge B, Rakotoarivonina H, Debeire P, Chabbert B (2010) Combination of ammonia and xylanase pretreatments: impact on enzymatic xylan and cellulose recovery from wheat straw. Bioresour Technol 101:6712–6717

    Article  PubMed  CAS  Google Scholar 

  • Rosgaard L, Andric P, Dam-Johansen K, Pedersen S, Meyer AS (2007) Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl Biochem Biotechnol 143:27–40

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnol 2:164–177

    Article  CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999) Molecular characterization of a novel peroxidise isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235

    Article  PubMed  Google Scholar 

  • Saha BC (2000) Alpha-L-arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18:403–423

    Article  PubMed  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002) Swollenin, a Trichoderma reesei protein with sequence with sequence similary to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211

    Article  PubMed  CAS  Google Scholar 

  • Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez AT, Martínez MJ (2011) Fungal pretreatment: An alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506

    Article  PubMed  CAS  Google Scholar 

  • Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  PubMed  CAS  Google Scholar 

  • Selig MJ, Adney WS, Himmel ME, Decker SR (2009) The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose 16:711–722

    Article  CAS  Google Scholar 

  • Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR (2008) Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol 99:4997–5005

    Article  PubMed  CAS  Google Scholar 

  • Sipos B, Benkö Z, Dienes D, Réczey K, Viikari L, Siika-Aho M (2010) Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Appl Biochem Biotechnol 161:347–364

    Article  PubMed  CAS  Google Scholar 

  • Sipos B, Szilágyi M, Sebestyén Z, Perazzini R, Dienes D, Jakab E, Crestini C, Réczey K (2011) Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. C R Biol 334:812–823

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Tabka MG, Herpoël-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb Tech 39:897–902

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  PubMed  CAS  Google Scholar 

  • Tengborg C, Galbe M, Zacchi G (2001) Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme Microb Tech 28:835–844

    Article  CAS  Google Scholar 

  • Tenkanen M, Makkonen M, Perttula M, Viikari L, Teleman A (1997) Action of Trichoderma reesei mannanase on galactoglucomannan in pine kraft pulp. J Biotech 57:191–204

    Article  CAS  Google Scholar 

  • Teter S, Xu F, Nedwin GE, Cherry (2010) Enzymes for biorefineries. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products. Wiley, USA, pp 357–383

    Google Scholar 

  • Tomás-Pejó ME, Ballesteros M, Oliva JM, Olsson L (2010) Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. J Ind Microbiol Biotechnol 37:1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Tomás-Pejó ME, Alvira P, Ballesteros M, Negro MJ (2011) Pretreatment technologies for lignocellulose-to-bioethanol conversion. In: Larroche C, Ricke SC, Dussap CG, Gnansounou E, Pandey A (eds) Biofuels: Alternative feedstocks and conversion processes. Academic, USA, pp 149–176

    Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23:398–406

    Article  PubMed  CAS  Google Scholar 

  • Tu M, Saddler JN (2010) Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Appl Biochem Biotechnol 161:274–287

    Article  PubMed  CAS  Google Scholar 

  • Varga E, Klinke HB, Réczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88:567–574

    Article  PubMed  CAS  Google Scholar 

  • Vries RP, Harry CMK, Charlotte HP, Jacques AEB, Jaap V (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohyd Res 327:401–410

    Article  Google Scholar 

  • Wang W, Kang L, Wei H, Arora R, Lee YY (2011) Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl Biochem Biotechnol 164:1139–1149

    Article  PubMed  CAS  Google Scholar 

  • Wilson DB (2008) Aerobic microbial cellulase systems. In: Himmel ME (ed) Biomass recalcitrance. Deconstructing the plant cell wall for bioenergy. Blackwell Publishing, USA, pp 374–392

    Chapter  Google Scholar 

  • Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B, Holtzapple MT, Ladisch MR, Lee YY, Mosier N, Pallapolu VR, Shi J, Thomas SR, Warner RE (2011) Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol 102:11052–11062

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Zhang X, Greff DJ, Saddler JN (2004) Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 113–116:1115–1126

    Article  PubMed  Google Scholar 

  • Yang M, Li W, Liu B, Li Q, Xing J (2010) High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process. Bioresour Technol 101:4884–4888

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Bior 2:26–40

    Article  CAS  Google Scholar 

  • Yang R, Xu S, Wang Z, Yang W (2005) Aqueous extraction of corncob xylan and production of xylooligosaccharides. LWT–Food Sci Technol 38:677–682

    CAS  Google Scholar 

  • Yang M, Zhang A, Liu B, Li W, Xing J (2011) Improvement of cellulose conversion caused by the protection of Tween-80 on the adsorbed cellulase. Biochem Eng J 56:125–129

    Article  CAS  Google Scholar 

  • Zhang J, Siika-aho M, Tenkanen M, Viikari L (2011) The role of acetyl xylan esterase in solubilisation of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol Biofuels 4:60

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Qin W, Paice MG, Saddler JN (2009) High consistency enzymatic hydrolysis of hardwood substrates. Bioresour Technol 100:5890–5897

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Negro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alvira, P., Ballesteros, M., Negro, M.J. (2013). Progress on Enzymatic Saccharification Technologies for Biofuels Production. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_6

Download citation

Publish with us

Policies and ethics