Skip to main content

The Role of Fungal Enzymes in Global Biofuel Production Technologies

  • Chapter
  • First Online:

Abstract

The environmental impact of fossil fuels alongside the competition of agricultural land and water for the production of food versus that of first generation biofuels has led to great interest in improving second and third generation biofuel production. Lignocellulosic materials are the essential feedstock for second generation biofuels and vary according to the residing country and regions. At present, the biorefinery systems established to degrade the various lignocellulose feedstocks are expensive and inefficient. The stages in the biorefinery process include pre-treatment of the feedstock, acid or enzymatic hydrolysis followed by fermentation and possess various optimum temperatures and pH. Interest has turned to the role of fungi and various extracellular enzymes involved in the enzymatic hydrolysis of the lignocellulosic components, namely hemicellulose, cellulose and lignin. This review chapter discusses the leading enzymes involved in the production of biofuels, how they penetrate barriers within the biorefinery systems and their potential in the development of new production strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pre-treatment: fundamentals toward application. Biotech Adv 29:675–685

    Article  CAS  Google Scholar 

  • Akpinar O, Levent O, Sabanci S, Uysal RS, Sapci B (2011) Optimization and comparison of dilute acid pre-treatment of selected agricultural residues for recovery of xylose. BioResources 6:4103–4116

    CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pre-treatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol 101:4851–4861

    Article  PubMed  CAS  Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of morphogenesis. Biotechnol Biofuels 3:4

    Article  PubMed  Google Scholar 

  • Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pre-treated lignocellulosic substrates. Biotechnol Biofuels 4:3

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases: occurence and properties. FEMS Microbiol Rev 30:215–242

    Article  PubMed  CAS  Google Scholar 

  • Bastawde KB (1992) Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol 8:353–368

    Article  CAS  Google Scholar 

  • Blanchette RA (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–398

    Article  CAS  Google Scholar 

  • Bonnen AM, Anton LH, Orth AB (1994) Lignin-degrading enzymes of the commercial button mushroom, agaricus bisporus. Appl Environ Microbiol 60:960–965

    PubMed  CAS  Google Scholar 

  • Brambl R (2009) Fungal physiology and the origins of molecular biology. Microbiology 155:3799–3809

    Article  PubMed  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brás JLa, Cartmell A, Carvalho ALM, Verzé G, Bayer Ea, Vazana Y, Correia MaS, Prates JaM, Ratnaparkhe S, Boraston AB, Romão MJ, Fontes CMGa, Gilbert HJ (2011) Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc Nat Acad Sci USA 108:5237–5242

    Article  PubMed  Google Scholar 

  • Burton RA, Gidley MJ, Fincher GB (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol 6:724–732

    Article  PubMed  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  PubMed  CAS  Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in Lignin Content and Composition (Mechanisms of Control and Implications for the Genetic Improvement of Plants). Plant Physiol 110:3–13

    PubMed  CAS  Google Scholar 

  • Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705

    Article  PubMed  Google Scholar 

  • Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P (2011a) Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev 6:008–020

    CAS  Google Scholar 

  • Chandel AK, Chandrasekhar G, Silva MB, da Silva SS (2011b) The realm of cellulases in biorefinery development. Crit Rev Biotechnol: 1–16

    Google Scholar 

  • Chen M, Zeng G, Tan Z, Jiang M, Li H, Liu L, Zhu Y, Yu Z, Wei Z, Liu Y, Xie G (2011) Understanding lignin-degrading reactions of ligninolytic enzymes: binding affinity and interactional profile. PLOS ONE 6:e25647–e25647

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  • D’Souza TM, Merritt CS, Reddy CA (1999) Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65:5307–5313

    PubMed  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595

    Article  PubMed  CAS  Google Scholar 

  • Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50

    PubMed  CAS  Google Scholar 

  • Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym 68:117–128

    Article  CAS  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoid. Plant Physiol Biochem 46:356–370

    Article  PubMed  CAS  Google Scholar 

  • Festucci-Buselli RA, Otoni WC, Joshi CP (2007) Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz J Plant Physiol 19:1–13

    Article  CAS  Google Scholar 

  • Gao L, Gao F, Wang L, Geng C, Chi L, Zhao J, Qu Y (2012) N-glycoform diversity of cellobiohydrolase I from penicillium decumbent and the synergism of a no hydrolytic glycoform in cellulose degradation. J Biol Chem

    Google Scholar 

  • Grassick A, Murray PG, Thompson R, Collins CM, Byrnes L, Birrane G, Higgins TM, Tuohy MG (2004) Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. Eur J Biochem 271:4495–4506

    Article  PubMed  CAS  Google Scholar 

  • Guarro J, GenéJ Stchigel AM (1999) Developments in fungal taxonomy. Clin Microbiol Rev 12:454–500

    PubMed  CAS  Google Scholar 

  • Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605

    PubMed  CAS  Google Scholar 

  • Harris D, DeBolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8:244–262

    Article  PubMed  CAS  Google Scholar 

  • Hernon AT, O’Donovan A, Shier MC (2010). Applications of fungal enzymes in bioconversion. In: Gupta VK, Tuohy MG, Gaur RK (Eds) Lambert Academic Publishing, Germany. ISBN No: 978-3-8433-5800-2

    Google Scholar 

  • Howard R, Abotsi E, Jansen van Rensburg E, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    CAS  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanases: is it an additive or synergistic effect? Biotechnol Biofuels 4:36

    Article  PubMed  CAS  Google Scholar 

  • Isroi MR, Syamsiah S, Niklasson C, Nur Cahyanto M, Lundquist K, Taherzadeh M (2011) Biological pre-treatment’s of lignocelluloses with white-rot fungi and its applications: a review. BioResources 6:5224–5259

    Google Scholar 

  • Koclar Avci G, Coruh N, Bolukbasi U, Ogel ZB (2012) Oxidation of phenolic compounds by the bifunctional catalase-phenol oxidase (CATPO) from scytalidium thermophilum. App Microbiol Biotech

    Google Scholar 

  • Krebs B, Merkel M, Rompel A (2004) Catechol oxidase and biomimetic approach. J Argent Chem Soc 92:1–15

    CAS  Google Scholar 

  • Kunamneni A, Camarero S, Garcia-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and Applications of fungal laccases for organic synthesis. Microb Cell Fact 7

    Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    Article  CAS  Google Scholar 

  • Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes–ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20

    Article  PubMed  CAS  Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosic: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • Mtui GYS (2009) Recent advances in pre-treatment of lignocellulosic wastes and production of value added products. Afr J Biotechnol 8:1398–1415

    CAS  Google Scholar 

  • Ong LK (2004) Conversion of lignocellulosic biomass to fuel ethanol: a brief review. The Planter 80:517–524

    Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-a resolution containing a full complement of coppers. J biol chem 277:37663–37669

    Article  PubMed  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonides-related signalling. Phytochemistry 57:929–967

    Article  PubMed  CAS  Google Scholar 

  • Rompel A, Fischer H, Meiwes D, Büldt-Karentzopoulos K, Dillinger R, Tuczek F, Witzel H, Krebs B (1999) Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and populous nigra: evidence for a binuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin. J Biol Inorg Chem 4:56–63

    Article  PubMed  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Simmons BA, Loque D, Blanch HW (2008) Next-generation biomass feed stocks for biofuel production. Genome Biol 9:242

    Article  PubMed  Google Scholar 

  • Sutay Kocabas D, Bakir U, Phillips SEV, McPherson MJ, Ogel ZB (2008) Purification, characterization, and identification of a novel bifunctional catalase-phenol oxidase from scytalidium thermophilum. Appl Microbiol Biotechnol 79:407–415

    Article  PubMed  CAS  Google Scholar 

  • Taylor G (2008) Biofuels and the biorefinery concept. Energy Policy 36:4406–4409

    Article  Google Scholar 

  • Thygesen LG, Hidayat BJ, Johansen KS, Felby C (2011) Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls. J Ind Microbiol Biotechnol 38:975–983

    Article  PubMed  CAS  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophile and thermostable enzymes in biorefining. Microb Cell Fact 6:9

    Article  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  PubMed  CAS  Google Scholar 

  • Widiastuti H (2008) Activity of ligninolytic enzymes during growth and fruiting body development of white rot fungi Omphalina sp and Pleurotus ostreatus. HAYATI J Biosci 15:140–144

    Google Scholar 

  • World Energy Council (2010) Biofuels: policies, standards and technologies. http://www.worldenergy.org/documents/biofuelsformatedmaster.pdf. Cited 12 Mar 2012

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijai K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coyne, J.M., Gupta, V.K., Donovon, A.O., Tuohy, M.G. (2013). The Role of Fungal Enzymes in Global Biofuel Production Technologies. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_5

Download citation

Publish with us

Policies and ethics