Skip to main content

Acid Pre-treatment Technologies and SEM Analysis of Treated Grass Biomass in Biofuel Processing

  • Chapter
  • First Online:
Book cover Biofuel Technologies

Abstract

Currently, ethanol is the most important renewable fuel in terms of volume and market value. It is produced from sugar- and starch-based materials such as sugarcane and corn, which is unsustainable. The second generation production of ethanol derived from lignocellulosic materials is now the prime target of biofuel production. Hydrolysis of lignocellulosic materials is the first step for either digestion to biogas (methane) or fermentation to ethanol. Enzymatic hydrolysis of lignocelluloses without pre-treatment is not effective because of the high stability of lignocellulose materials to enzymatic or bacterial attacks. Pre-treatment by physical, chemical or biological means are essential processes for ethanol production from lignocellulosic materials. Pre-treatment enhances the bio-digestibility of the wastes for ethanol and biogas production and increases accessibility of the enzymes to the materials. It results in enrichment of the difficult biodegradable materials, and improves the yield of ethanol or biogas. A detailed understanding of the composition of the lignocellulosic waste is essential to develop and optimize the mechanistic model for its conversion. This model primarily includes pre-treatment processes which help integrate waste streams into the raw materials for ethanol plants, for improved production of ethanol (Taherzadeh and Karimi 2008). This chapter discusses in detail the composition and chemical constituents of the grass cell wall which contributes to agricultural waste residues, a plentiful and sustainable biofuel feedstock. Pre-treatment methods are discussed with a focus on mild acid pre-treatments and scanning electron microscopy analysis (SEM) of post-treatment biomass residuals is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson W, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35:355–366

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular biology of the cell, biochemical education, vol 18. Garland Publishing, New York. doi:10.1002/bmb.1990.5690180128

  • Béguin P, Aubert JP (2000) Cellulases. In: Lederberg J (ed) Encyclopedia of microbiology. Academic, San Diego, pp 744–758

    Google Scholar 

  • Bertoldo C, Antranikian G (2002) Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol 6:151–160

    Article  PubMed  CAS  Google Scholar 

  • Brett C, Waldron K (1996) Physiology and biochemistry of plant cell walls, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Cara C, Ruiz E, Oliva JM, Sáez F, Castro E (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pre-treatment and enzymatic saccharification. Bioresour Technol 99:1869–1876. doi:10.1016/j.biortech.2007.03.037

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Ann Rev Plant Physiol Plant Molec Biol 47:445–476

    Article  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, McCann M (2000) In: Buchanan BB, Gruissem W, Jones RJ (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, MA, pp 25–109

    Google Scholar 

  • Comparot-Moss S, Denyer K (2009) The evolution of the starch biosynthetic pathway in cereals and other grasses. J Exp Bot 60:2481–2492. doi:10.1093/jxb/erp141

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nature 6:850–861

    CAS  Google Scholar 

  • Cowling EB (1974) Physical and chemical constraints in the hydrolysis of cellulose and lignocellulosic materials. Biotechnol Bioeng Symp 5:163–181

    Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    Article  PubMed  CAS  Google Scholar 

  • Dinges JR (2001) Molecular structure of three mutations at the maize sugary1 locus and their allele-specific phenotypic effects. Plant Physiol 125:1406–1418. doi:10.1104/pp.125.3.1406

    Article  PubMed  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356 (American Chemical Society). doi:10.1021/ac60111a017

    Google Scholar 

  • Ebringerová A et al (2005) Hemicellulose. In: Heinze T (ed) Advances in polymer science, vol 186. Springer-Verlag, Berlin/Heidelberg, pp 1–67. doi:10.1007/b136812

  • Endler A, Persson S (2011) Cellulose synthases and synthesis in arabidopsis. Molecular Plant 4:199–211. doi:10.1093/mp/ssq079

    Article  PubMed  CAS  Google Scholar 

  • Faik A (2010) Xylan biosynthesis: news from the grass. Plant Physiol 153:396–402. doi:10.1104/pp.110.154237

    Article  PubMed  CAS  Google Scholar 

  • Gharpuray MM, Lee YH, Fan LT (1983) Structural modification of lignocellulosics by pre-treatments to enhance enzymatic-hydrolysis. Biotechnol Bioeng 25:157–172

    Article  PubMed  CAS  Google Scholar 

  • Gomez LD, Bristow JK, Statham ER, McQueen-Mason SJ (2008) Analysis of saccharification in brachypodium distachyon stems under mild conditions of hydrolysis. Biotechnol Biofuels 1:15

    Article  PubMed  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027

    Article  PubMed  CAS  Google Scholar 

  • Heredia A, Jimenez A, Guillen R (1995) Composition of plant cell walls. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung 200:24–31

    Article  PubMed  CAS  Google Scholar 

  • Hernon AT, O’Donovan A, Shier MC (2010) Applications of Fungal Enzymes In Bioconversion. In: Gupta VK, Tuohy MG, Gaur RK (eds) Fungal biochemistry and biotechnology. Lambert Academic Publishing, Germany. ISBN no: 978-3-8433-5800-2

    Google Scholar 

  • Iiyama K, Lam T, Stone B (1990) Phenolic-acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 29:733–737

    Article  CAS  Google Scholar 

  • Ishii T (1999) The plant cell wall polysaccharide rhamnogalacturonan II self-assembles into a covalently cross-linked dimer. J Biol Chem 274:13098–13104. doi:10.1074/jbc.274.19.13098

    Article  PubMed  CAS  Google Scholar 

  • Jieben T, Kefu C, Jun X, Jun L, Chuanshan Z (2011) Effects of Dilute acid hydrolysis on composition and structure of cellulose in Euliopsis Binata. Bioresources 6:1069–1078

    Google Scholar 

  • Kato Y, Ito S, Iki K, Matsuda K (1982) Xyloglucan and r{beta}-D-glucan in cell walls of rice seedlings. Plant Cell Physiol 23:351–364

    CAS  Google Scholar 

  • Kobayashi M, Matoh T, Azuma J (1996) Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol 110:1017–1020. doi:10.1104/pp.110.3.1017

    PubMed  CAS  Google Scholar 

  • Kumar D, Murthy GS (2011) Impact of pre-treatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:27

    Article  PubMed  CAS  Google Scholar 

  • Morikawa K, la Cour TF, Nyborg J, Rasmussen KM, Miller DL, Clark BF (1978) High resolution x-ray crystallographic analysis of a modified form of the elongation factor Tu: guanosine diphosphate complex. J Mol Biol 125:325–338

    Article  PubMed  CAS  Google Scholar 

  • Nishitani K (1997) The role of endo xyloglucan transferase in the organization of plant cell walls. Int Rev Cytol 173:157–206

    Article  PubMed  CAS  Google Scholar 

  • Nishitani K, Nevins D (1991) Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units. J Biol Chem 266:6539–6543

    PubMed  CAS  Google Scholar 

  • Nishitani K, Nevins DJ (1989) Enzymic analysis of feruloylated arabinoxylans (Feraxan) derived from zea mays cell walls: II. fractionation and partial characterization of feraxan fragments dissociated by a Bacillus subtilis Enzyme (Feraxanase). Plant Physiol 91:242–248. doi:10.1104/pp.91.1.242

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for arabidopsis growth. Science 294:846–849, (New York, N.Y.). doi:10.1126/science.1062319

    Google Scholar 

  • Reiter WD (2002) Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol 5:536–542

    Article  PubMed  CAS  Google Scholar 

  • Richardson S, Gorton L (2003) Characterisation of the substituent distribution in starch and cellulose derivatives. Anal Chim Acta 497:27–65

    Article  CAS  Google Scholar 

  • Ridley BL, Mohnen DA, O’Neill MA, O’Neill Mohnen (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signalling. Phytochemistry 57:929–967

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E et al. (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211, (New York, N.Y.). doi:10.1126/science.1102765

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pre-treatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. doi:10.3390/ijms9091621

    Article  PubMed  CAS  Google Scholar 

  • Teeri T (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Tibtech 15:160–167

    Article  Google Scholar 

  • Timell TE (1964) Wood hemicellulose. Adv Carbohydr Chem 19:247–302

    Article  PubMed  CAS  Google Scholar 

  • Tsmousis G (1991) Science and technology of wood; structure, properties, utilization. Van Nostrand Reinhold, New York

    Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307. doi:10.1016/j.pbi.2008.03.002

    Article  PubMed  CAS  Google Scholar 

  • Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:49

    Google Scholar 

  • Willats WG, McCartney LM, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pre-treatment: the key to unlocking low-cost cellulosic ethanol. Environ Eng 2:26–40. doi:10.1002/bbb

    CAS  Google Scholar 

  • Zhao H, Kwak JH, Conrad Zhang Z, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68:235

    Article  CAS  Google Scholar 

  • http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html

  • http://www.ccrc.uga.edu

  • http://cellwall.genomics.purdue.edu

  • http://nutrition.jbpub.com

Download references

Acknowledgments

I would like to acknowledge Pierce Lalor and the Centre for Microscopy and Imaging at the National University of Ireland Galway for the use of and assistance with a Scanning Electron Microscope

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthonia O’Donovan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Donovan, A., Gupta, V.K., Coyne, J.M., Tuohy, M.G. (2013). Acid Pre-treatment Technologies and SEM Analysis of Treated Grass Biomass in Biofuel Processing. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_4

Download citation

Publish with us

Policies and ethics