Skip to main content

The Principle and Applications of Bioelectrochemical Systems

  • Chapter
  • First Online:

Abstract

Bioelectrochemical system (BES) is a unique technology that uses microorganisms to covert the chemical energy stored in biodegradable materials to direct electric current. Compared to traditional chemical and environmental technologies, BES offers a flexible platform for both oxidation and reduction reaction oriented processes, because any biodegradable substrate, especially waste materials, can be oxidized in the anode chamber, and the generated current can be directly harvested as electricity or used to produce value-added chemicals, desalinate salt water, and remediate contaminants. This chapter reviews the microbiological and technological principles of the BES technology and discusses the different functions and recent developments of systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 4010:94–3388

    Google Scholar 

  • Aulenta F, Canosa A, Majone M, Panero S, Reale P, Rossetti S (2008) Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system. Environ Sci Technol 4216:90–6185

    Google Scholar 

  • Kim B-h, Kim HJ, Hyun M-S, Park D-H (1999) Direct electrode reaction of Fe(III)-reduing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 92:127–131

    Google Scholar 

  • Biffinger JC, Ray R, Little BJ, Fitzgerald LA, Ribbens M, Finkel SE, Ringeisen BR (2009) Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnol Bioeng 1033:524–531

    Article  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 693:55–1548

    Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:5–483

    Article  Google Scholar 

  • Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF (2007) Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 7321:12–7003

    Google Scholar 

  • Butler CS, Clauwaert P, Green SJ, Verstraete W, Nerenberg R (2010) Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ Sci Technol 4412:4685–4691

    Article  CAS  Google Scholar 

  • Cao XX, Huang X, Liang P, Xiao K, Zhou YJ, Zhang XY, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 4318:7148–7152

    Article  CAS  Google Scholar 

  • Chang IS, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechn 162:163–177

    Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 2110:32–1229

    Google Scholar 

  • Chen X, Xia X, Liang P, Cao XX, Sun HT, Huang X (2011) Stacked microbial desalination cells to enhance water desalination efficiency. Environ Sci Technol 456:2465–2470

    Article  CAS  Google Scholar 

  • Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 10447:18871–18873

    Article  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 83:489–494

    Article  CAS  Google Scholar 

  • Cheng SA, Xing DF, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 4310:3953–3958

    Article  CAS  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Ham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 419:3354–3360

    Article  CAS  Google Scholar 

  • Cusick RD, Logan BE (2012) Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresour Technol 107:110–115

    Article  PubMed  CAS  Google Scholar 

  • Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu GL, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 896:2053–2063

    Article  CAS  Google Scholar 

  • Dewan A, Beyenal H, Lewandowski Z (2008) Scaling up microbial fuel cells. Environ Sci Technol 4220:7643–7648

    Article  CAS  Google Scholar 

  • EPA US (2004) How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers. Report No. EPA/510/R-04-002, office of underground storage tanks, U.S. EPA, Washington

    Google Scholar 

  • EuropeEnergyPortal (2012) Renewable energy sources in European Union. www.energy.eu

  • Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 785:873–880

    Article  CAS  Google Scholar 

  • Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 449:3629–3637

    Article  CAS  Google Scholar 

  • Forrestal C, Xu P, Ren Z (2012) Sustainable desalination using a microbial capacitive desalination cell. Energy Environ Sci 5:7161–7167

    Article  CAS  Google Scholar 

  • Freguia S, Rabaey K, Yuan ZG, Keller J (2008) Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 4221:7937–7943

    Article  CAS  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:63–11358

    Article  CAS  Google Scholar 

  • Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 223:337–343

    Article  CAS  Google Scholar 

  • Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 3922:8943–8947

    Article  CAS  Google Scholar 

  • Harnisch F, Schroder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 3911:4433–4448

    Article  CAS  Google Scholar 

  • Huggins T, Fallgren P, Ren Z (2012) Energy and performance comparison of membrane-less microbial fuel cell and conventional aeration treating of wastewater. Bioresour Technol Rev

    Google Scholar 

  • Jacobson KS, Drew DM, He Z (2011) Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ Sci Technol 4510:4652–4657

    Article  CAS  Google Scholar 

  • Keller J, Rabaey K (2008) Experiences from MFC pilot plant operation: how to get the technology market ready?. State College, USA

    Google Scholar 

  • Kim Y, Logan BE (2011a) Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proc Natl Acad Sci U S A 10839:16176–16181

    Article  Google Scholar 

  • Kim Y, Logan BE (2011b) Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environ Sci Technol 4513:5–5840

    Google Scholar 

  • Liu H, Cheng S, Logan BE (2005a) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 392:62–658

    Google Scholar 

  • Liu H, Grot S, Logan BE (2005b) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 3911:20–4317

    Google Scholar 

  • Logan BE (2008) Microbial fuel cells. Wiley, New York

    Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 75:375–381

    Article  CAS  Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 856:1665–1671

    Article  CAS  Google Scholar 

  • Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 395:52–942

    Google Scholar 

  • Logan B, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 4017:5181–5192

    Article  CAS  Google Scholar 

  • Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 419:3341–3346

    Article  CAS  Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 4223:8630–8640

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev 47:497–508

    Google Scholar 

  • Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 412:4896–4906

    Article  CAS  Google Scholar 

  • Lovley DR, Nevin KP (2011) A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr Opin Biotechnol 223:8–441

    Google Scholar 

  • Lovley DR, Phillips EJ (1989) Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Appl Environ Microbiol 5512:3234–3236

    Google Scholar 

  • Luo H, Jenkins P, Ren Z (2011) Concurrent desalination and hydrogen generation using microbial desalination cells. Environ Sci Technol 451:340–344

    Article  CAS  Google Scholar 

  • Luo H, Xu P, Jenkins P, Ren Z (2012a) Ionic composition and transport mechanisms in microbial desalination cells. J Membr Sci 409–410:16–23

    Article  CAS  Google Scholar 

  • Luo H, Xu P, Roane TM, Jenkins PE, Ren Z (2012b) Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour Technol 105:6–60

    Article  CAS  Google Scholar 

  • Lyon D, Buret F, Vogel T, Monier J (2010) Is resistance futile? changing external resistance does not improve microbial fuel cell performance. Bioelectrochemistry 781:2–7

    Article  CAS  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella Secretes flavins that mediate extracellular electron transfer. PNAS 10510:3968–3973

    Article  CAS  Google Scholar 

  • Marsili E, Sun J, Bond DR (2010) Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of growth stage and imposed electrode potential. Electroanalysis 227–8:865–874

    Article  CAS  Google Scholar 

  • McCarty PL, Bae J, Kim J (2011) Domestic wastewater treatment as a net energy producer-can this be achieved? Environ Sci Technol 4517:7100–7106

    Article  CAS  Google Scholar 

  • Mcinerney MJ, Beaty PS (1988) Anaerobic community structure from a nonequilibrium thermodynamic perspective. Can J Microbiol 344:487–493

    Article  Google Scholar 

  • Meehan A, Gao H, Lewandowksi Z (2011) Energy harvesting with microbial fuel cell power management system. IEEE Trans Power Electron 26:176–181

    Article  Google Scholar 

  • Mehanna M, Kiely PD, Call DF, Logan BE (2010) Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ Sci Technol 4424:83–9578

    Google Scholar 

  • Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 43:324–329

    Article  Google Scholar 

  • Milliken CE, May HD (2007) Sustained generation of electricity by the spore-forming, gram-positive, desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol 735:9–1180

    Google Scholar 

  • Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 3920:8–4961

    Google Scholar 

  • Morris JM, Jin S (2012) Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J Hazard Mater 213:474–477

    Article  PubMed  CAS  Google Scholar 

  • Morris JM, Jin S, Crimi B, Pruden A (2009) Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chem Eng J 1462:161–167

    Article  CAS  Google Scholar 

  • Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1(2)

    Google Scholar 

  • Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou JH, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 779:2882–2886

    Article  CAS  Google Scholar 

  • Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 875:461–472

    Article  CAS  Google Scholar 

  • O’Sullivan CA, Burrell PC, Clarke WP, Blackall LL (2005) Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnol Bioeng 927:871–878

    Article  CAS  Google Scholar 

  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 1016:1533–1543

    Article  CAS  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Gallego YA, Diels L, Vanbroekhoven K (2011) An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew Sustain Energy Rev 152:1305–1313

    Article  CAS  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Olsen SI, Nigam PS, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. Rsc Adv 24:1248–1263

    Article  CAS  Google Scholar 

  • Parameswaran P, Torres CI, Lee HS, Krajmalnik-Brown R, Rittmann BE (2009) Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances. Biotechnol Bioeng 1033:513–523

    Article  CAS  Google Scholar 

  • Parameswaran P, Zhang H, Torres CI, Rittmann BE, Krajmalnik-Brown R (2010) Microbial community structure in a biofilm anode fed with a fermentable substrate: the significance of hydrogen scavengers. Biotechnol Bioeng 1051:69–78

    Article  CAS  Google Scholar 

  • Park JD, Ren ZY (2012) Hysteresis controller based maximum power point tracking energy harvesting system for microbial fuel cells. J Power Sources 205:151–156

    Article  CAS  Google Scholar 

  • Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 664:7–1292

    Google Scholar 

  • Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 813:55–348

    Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2002) A novel electrochemically active and Fe(III)—reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham AF, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  • Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 2331:77–82

    Article  CAS  Google Scholar 

  • Pinto RP, Srinivasan B, Guiot SR, Tartakovsky B (2011) The effect of real-time external resistance optimization on microbial fuel cell performance. Water Res 454:8–1571

    Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc Roy Soc Lond Ser 84571:260–276

    Article  Google Scholar 

  • Powlson DS, Riche AB, Shield I (2005) Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Ann Appl Biol 1462:193–201

    Article  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev 810:16–706

    Google Scholar 

  • Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 399:8–3401

    Google Scholar 

  • Rabaey K, Butzer S, Brown S, Keller J, Rozendal RA (2010) High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environ Sci Technol 4411:4315–4321

    Article  CAS  Google Scholar 

  • Rabaey K, Girguis P, Nielsen LK (2011) Metabolic and practical considerations on microbial electrosynthesis. Curr Opin Biotechnol 223:7–371

    Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 4357045:101–1098

    Google Scholar 

  • Ren Z, Ward TE, Logan BE, Regan JM (2007a) Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J Appl Microbiol 1036:2258–2266

    Article  CAS  Google Scholar 

  • Ren ZY, Ward TE, Regan JM (2007b) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 4113:4781–4786

    Article  CAS  Google Scholar 

  • Ren Z, Steinberg LM, Regan JM (2008) Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 583:617–622

    Google Scholar 

  • Ren Z, Ramasamy RP, Cloud-Owen SR, Yan H, Mench MM, Regan JM (2011a) Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells. Bioresour Technol 1021:416–421

    Article  CAS  Google Scholar 

  • Ren Z, Yan H, Wang W, Mench M, Regan J (2011b) Characterization of microbial fuel cells at microbially and electrochemically meaningful timescales. Environ Sci Technol 456:2435–2441

    Article  CAS  Google Scholar 

  • Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 7511:8–3673

    Google Scholar 

  • Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng 976:1398–1407

    Article  CAS  Google Scholar 

  • Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 1021:324–333

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 268:450–459

    Article  CAS  Google Scholar 

  • Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Comm 119:1752–1755

    Article  CAS  Google Scholar 

  • Soares AA, Albergaria JT, Domingues VF, Alvim-Ferraz MDM, Delerue-Matos C (2010) Remediation of soils combining soil vapor extraction and bioremediation: benzene. Chemosphere 808:823–828

    Article  CAS  Google Scholar 

  • Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2010) Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 441:513–517

    Article  CAS  Google Scholar 

  • Summers ZM, Fogarty H, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic co-culture of anaerobic bacteria. Science 330:1413–1415

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Vega CA, Tamamushi R (1983) Mediating effects of ferric chelate compound in microbial fuel cells. Bioelectrochem Bioenerg 112–3:135–143

    Article  Google Scholar 

  • Ter Heijne A, Liu F, van der Weijden R, Weijma J, Buisman CJN, Hamelers HVM (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 4411:4376–4381

    Article  CAS  Google Scholar 

  • Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE (2009) Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol 4324:9519–9524

    Article  CAS  Google Scholar 

  • Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 341:3–17

    Article  CAS  Google Scholar 

  • USCongress (2007) Energy independence and security act of 2007. http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf

  • von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 743:615–623

    Article  CAS  Google Scholar 

  • Wang G, Huang LP, Zhang YF (2008) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 3011:1959–1966

    Article  CAS  Google Scholar 

  • Wang H, Park J, Ren ZY (2012) Active energy harvesting from microbial fuel cells at the maximum power point without using resistors. Environ Sci Technol 469:5247–5252

    Article  CAS  Google Scholar 

  • Wei J, Liang P, Huang X (2012) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 10220:44–9335

    Google Scholar 

  • Zhang F, Brastad KS, He Z (2011) Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environ Sci Technol 4515:6690–6696

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong (Jason) Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, Z.(. (2013). The Principle and Applications of Bioelectrochemical Systems. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_19

Download citation

Publish with us

Policies and ethics