Skip to main content

Biomethanation Potential of Biological and Other Wastes

  • Chapter
  • First Online:
Biofuel Technologies

Abstract

Anaerobic technology has been traditionally applied for the treatment of carbon rich wastewater and organic residues. Anaerobic processes can be fully integrated in the biobased economy concept for resource recovery. After a brief introduction about applications of anaerobic processes to industrial wastewater treatment, agriculture feedstock and organic fraction of municipal solid waste, the position of anaerobic processes in biorefinery concepts is presented. Integration of anaerobic digestion with these processes can help in the maximisation of the economic value of the biomass used, while reducing the waste streams produced and mitigating greenhouse gases emissions. Besides the integration of biogas in the existing full-scale bioethanol and biodiesel production processes, the potential applications of biogas in the second generation lignocellulosic, algae and syngas-based biorefinery platforms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum sp nov, an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351

    Article  CAS  Google Scholar 

  • Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuel Bioprod Bior 5:93–114

    Article  CAS  Google Scholar 

  • Adams JMM, Toop TA, Donnison IS, Gallagher JA (2011) Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour Technol 102:9976–9984

    Article  PubMed  CAS  Google Scholar 

  • Agler M, Garcia M, Lee E, Schilicher M, Angenent L (2008) Thermophilic anaerobic digestion to increase the net energy balance of corn grain ethanol. Environ Sci Technol 42:6723–6729

    Article  PubMed  CAS  Google Scholar 

  • Alves MM, Picavet MA, Pereira MA, Cavaleiro AJ, Sousa DZ (2007) Novel anaerobic reactor for the removal of long chain fatty acids from fat containing wastewater. Patent number WO/2007/058557

    Google Scholar 

  • Amon T, Amon B, Kryvoruchko V, Bodiroza V, Pötsch E, Zollitsch W (2006) Optimising methane yield from anaerobic digestion of manure: effects of dairy systems and of glycerin supplementation. Int Congr Ser 1293:217–220

    Article  CAS  Google Scholar 

  • Amorim HV, Lopes ML, Oliveira JVC, Buckerige MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biot 91:1267–1275

    Article  CAS  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domínguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    Article  PubMed  CAS  Google Scholar 

  • Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev 16:2070–2093

    Article  Google Scholar 

  • Basu R, Klasson KT, Clausen EC, Gaddy JL (1993) Biological conversion of synthesis gas. Bioreactor studies. Topical Report. Foster Wheeler USA Corporation, DOE contract no. DE-AC21-86MC23077

    Google Scholar 

  • Bird KT, Chynoweth DP, Jerger DE (1990) Effects of marine algal proximate composition on methane yields. J Appl Phycol 2:207–213

    Article  Google Scholar 

  • Blonskaja V, Menert A, Vilu R (2003) Use of two-stage anaerobic treatment for distillery waste. Environ Res 7:671–678

    Article  CAS  Google Scholar 

  • Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microb 55:1735–1741

    CAS  Google Scholar 

  • Borjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26:7–13

    Article  PubMed  Google Scholar 

  • Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15:834–844

    Article  PubMed  CAS  Google Scholar 

  • Briand X, Morand P (1997) Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation. J Appl Phycol 9:511–524

    CAS  Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953

    Article  PubMed  CAS  Google Scholar 

  • Castrillón L, Fernández-Nava Y, Ormaechea P, Marañón E (2011) Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresour Technol 102:7845–7849

    Article  PubMed  Google Scholar 

  • Cecchi F, Pavan P, Mata-Alvarez J (1996) Anaerobic co-digestion of sewage sludge: application to the macroalgae from the Venice lagoon. Resour Conserv Recy 17:57–66

    Article  Google Scholar 

  • Chynoweth DP (2005) Renewable biomethane from land and ocean energy crops and organic wastes. HortSci 40:283–286

    CAS  Google Scholar 

  • Costa JC, Gonçalves PR, Nobre A, Alves MM (2012) Biomethanation potential of macroalgae Ulva spp and Gracilaria spp and in co-digestion with waste activated sludge. Bioresour Technol 114:320–326

    Article  PubMed  CAS  Google Scholar 

  • Cotter JL, Chinn MS, Grunden AM (2009) Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzyme Microb Technol 44:281–288

    Article  CAS  Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    PubMed  CAS  Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energ Convers Manage 50:14–34

    Article  CAS  Google Scholar 

  • Dias MOS, Ensinas AV, Nebra SA, Maciel Filho R, Rossell CEV, Maciel MRW (2009) Production of bioethanol and other bio-materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87:1206–1216

    Article  CAS  Google Scholar 

  • Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2011) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energ 88:3454–3463

    Article  CAS  Google Scholar 

  • EN14214 (2008) Automative Fuels. Fatty acid methyl esters (FAME) for diesel engines. Requirements and test methods

    Google Scholar 

  • Eskicioglu C, Kennedy KJ, Marin J, Strehler B (2011) Anaerobic digestion of whole stillage from dry-gring corn ethanol plant under mesophilic and thermophilic conditions. Bioresour Technol 102:1079–1086

    Article  PubMed  CAS  Google Scholar 

  • EurObserv’ER (2010) Biogas Barometer—November 2010. Systèmes Solaires, le journal des énergies renouvelables, 200:104–119. http://www.eurobserv-er.org/pdf/baro200b.pdf

  • Fang HHP, Chui HK, Li YY (1995) Anaerobic degradation of butyrate in a UASB reactor. Bioresour Technol 51:75–81

    Article  CAS  Google Scholar 

  • Fountoulakis MS, Petousi I, Manios T (2010) Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manage 30:1849–1853

    Article  CAS  Google Scholar 

  • Fu RK, Mazzella G (1990) Evaluation of biological conversion of coal-derived synthesis gas. Topical report. University of Arkansas, University of Arkansas, DOE contract no. DE-FG21-90MC27225

    Google Scholar 

  • Guiot SR, Cimpoia R, Carayon G (2011) Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas. Environ Sci Technol 45:2006–2012

    Article  PubMed  CAS  Google Scholar 

  • Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167

    CAS  Google Scholar 

  • Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg 13:83–114

    Article  CAS  Google Scholar 

  • Gunaseelan VN (2009) Biomass estimates, characteristics, biochemical methane potential, kinetics and energy flow from Jatropha curcus on dry lands. Biomass Bioenerg 33:589–596

    Article  Google Scholar 

  • Harper SR, Pohland FG (1986) Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnol Bioeng 28:585–602

    Article  PubMed  CAS  Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206

    Article  PubMed  CAS  Google Scholar 

  • Holm-Nielsen JB, Lomborg CJ, Oleskowicz-Popiel P, Esbensen KH (2008) Online near infrared monitoring of glycerol-boosted anaerobic digestion processes: evaluation of process analytical technologies. Biotechnol Bioeng 99:302–313

    Article  PubMed  CAS  Google Scholar 

  • Huang JS, Jih CG, Lin SD, Ting WH (2003) Process kinetics of UASB reactors treating non-inhibitory substrate. J Chem Technol Biotechnol 78:762–772

    Article  CAS  Google Scholar 

  • IEA (2010) Sustainable production of second-generation biofuels. OECD/IEA, Paris. http://www.iea.org/papers/2010/second_generation_biofuels.pdf. Cited 24 May 2012

  • Jaruwat P, Kongjao S, Hunsom M (2010) Management of biodiesel wastewater by the combined processes of chemical recovery and electrochemical treatment. Energ Convers Manage 51:531–537

    Article  CAS  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1992) Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Rev 88:181–197

    Article  CAS  Google Scholar 

  • Jones CS, Mayfield SP (2011) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotech 23:346–351

    Article  PubMed  Google Scholar 

  • Jung GY, Jung HO, Kim JR, Ahn Y, Park S (1999) Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnol Lett 21:525–529

    Article  CAS  Google Scholar 

  • Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568

    Article  PubMed  CAS  Google Scholar 

  • Kerby RL, Ludden PW, Roberts GP (1995) Carbon monoxide dependent growth of Rhodospirillum rubrum. J Bacteriol 177:2241–2244

    PubMed  CAS  Google Scholar 

  • Kocsisová T, Cvengroš J (2006) G-phase form methyl ester production—splitting and refining. Pet Coal 48:1–5

    Google Scholar 

  • Kolesárová N, Hutňan M, Špalková V, Kuffa R, Bodík I (2011) Anaerobic treatment of biodiesel by-products in a pilot scale reactor. Chem Pap 65:447–453

    Article  Google Scholar 

  • Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by Clostridium ragsdalei. Bioresour Technol 102:5794–5799

    Article  PubMed  CAS  Google Scholar 

  • Langeveld JWA, Dixon J, Jaworski JF (2010) Development perspectives of the biobased economy: a review. Crop Sci 50:S142–S151

    Article  Google Scholar 

  • Lee P-H, Bae J, Kim J, Chen W-H (2011) Mesophilic anaerobic digestion of corn thin stillage: a technical and energetic assessment of the corn-to-ethanol industry integrated with anaerobic digestion. J Chem Technol Biot 86:1514–1520

    Article  CAS  Google Scholar 

  • Lichts FO (2010) Industry Statistics: 2010 World Fuel Ethanol Production. Renewable Fuels Association. Available via http://www.ethanolrfa.org/pages/statistics#E. Cited 19 Feb 2012

  • Luo G, Talebnia F, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept. Bioresour Technol 102:1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Van Wambeke M, Carballa M, Verstraete W (2008) Improvement of the anaerobic treatment of potato processing wastewater in a UASB reactor by co-digestion with glycerol. Biotechnol Lett 30:861–867

    Article  PubMed  CAS  Google Scholar 

  • Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sust Energ Rev 11:1300–1311

    Article  CAS  Google Scholar 

  • Masse L, Masse DI, Kennedy KJ, Chou SP (2002) Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater. Biotechnol Bioeng 79:43–52

    Article  PubMed  CAS  Google Scholar 

  • Mata-Alvarez J, Macé S, Llabres P (2000) Anaerobic digestion of organic solid wastes an overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  CAS  Google Scholar 

  • Meredith J (2003) Understanding energy use and energy users in contemporary ethanol plants. In: Jacques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook, 4th edn. Nottingham University Press, Nottingham, pp 355–361

    Google Scholar 

  • Morand P, Briand X (1999) Anaerobic digestion of Ulva sp. 2. Study of Ulva degradation and methanisation of liquefaction juices. J Appl Phycol 11:165–177

    Article  Google Scholar 

  • Mosey FE (1983) Mathematical modeling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci Technol 15:209–232

    CAS  Google Scholar 

  • Murto M, Björnsson L, Mattiasson B (2004) Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J Environ Manage 70:101–107

    Article  PubMed  CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  PubMed  CAS  Google Scholar 

  • Neves L (2009) Anaerobic co-digestion of organic wastes. University of Minho, Braga, Portugal. http://hdl.handle.net/1822/9875

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust 37:52–68

    Article  CAS  Google Scholar 

  • Nkemka VN, Murto M (2010) Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. J Environ Manage 91:1573–1579

    Article  PubMed  CAS  Google Scholar 

  • O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158:373–375

    PubMed  Google Scholar 

  • Otsuka K, Yoshino A (2004) A fundamental study on anaerobic digestion of sea lettuce. OCEANS ‘04 MTS/IEEE TECHNO-OCEAN ‘04, Conference proceedings, 3:1770–1773

    Google Scholar 

  • Park J-H, Yoon J–J, Park H-D, Lim DJ, Kim S-H (2012) Anaerobic digestibility of algal bioethanol residue. Bioresour Technol 113:78–82

    Article  PubMed  CAS  Google Scholar 

  • Pereira MA (2003) Anaerobic biodegradation of long chain fatty acids—biomethanisation of biomass-associated LCFA as a challenge for the anaerobic treatment of effluents with high lipid-LCFA content. University of Minho, Braga, Portugal. http://hdl.handle.net/1822/4650

  • Pérez-García M, Romero-García LI, Rodríguez-Cano R, Sales-Márquez D (2005) Effect of pH influent conditions in fixed-film reactors for anaerobic thermophilic treatment of wine-distillery wastewater. Water Sci Technol 51:183–189

    PubMed  Google Scholar 

  • Peu P, Sassi J-F, Girault R, Picard S, Saint-Cast P, Béline F, Dabert P (2011) Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry. Bioresour Technol 102:10794–10802

    Article  PubMed  CAS  Google Scholar 

  • Phukingngam D, Chavalparit O, Somchai D, Ongwandee M (2011) Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production. Chem Pap 65:644–651

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) he potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  PubMed  CAS  Google Scholar 

  • Plugge CM, Van Lier JB, Stams AJM, Jeison D (2009) Microbial energy production from biomass. In: Rabaey K, Angenent L, Schroder U, Keller J (eds) Bioelectrochemical systems. IWA Publishing, London, pp 17–38

    Google Scholar 

  • Rabelo SC, Carrere H, Maciel Filho R, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102:7887–7895

    Article  PubMed  CAS  Google Scholar 

  • Rajeshwari KV, Balakrishnan M, Kansal A, Lata K, Kishore VVN (2000) State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sust Energ Rev 4:135–156

    Article  CAS  Google Scholar 

  • Ras M, Lardon L, Sialve B, Bernet N, Steyer J-P (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102:200–206

    Article  PubMed  CAS  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  PubMed  CAS  Google Scholar 

  • Rother M, Metcalf WW (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA 101:16929–16934

    Article  PubMed  CAS  Google Scholar 

  • Rusten B, Sahu AK (2011) Microalgae growth for nutrient recovery from sludge liquor and production of renewable bioenergy. Water Sci Technol 64:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    Article  CAS  Google Scholar 

  • Schaefer SH, Sung S (2008) Retooling the ethanol industry: thermophilic anaerobic digestion of thin stillage for methane production and pollution prevention. Water Environ Res 80:101–108

    Article  PubMed  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    PubMed  CAS  Google Scholar 

  • Schink B, Stams AJM (2006) Syntrophism among prokaryotes. Prokaryotes 2:309–335

    Article  Google Scholar 

  • Seth R, Goyal SK, Handa BK (1995) Fixed film biomethanation of distillery spentwash using low cost porous media. Resour Conserv Recy 14:79–89

    Article  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  PubMed  CAS  Google Scholar 

  • Siles JA, Martín MA, Chica AF, Martín A (2010) Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing. Bioresour Technol 101:6315–6321

    Article  PubMed  CAS  Google Scholar 

  • Siles JA, Gutiérrez MC, Martín MA, Martín A (2011) Physical–chemical and biomethanization treatments of wastewater from biodiesel manufacturing. Bioresour Technol 102:6348–6351

    Article  PubMed  CAS  Google Scholar 

  • Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39

    Article  PubMed  Google Scholar 

  • Sipma J, Lens PNL, Stams AJM, Lettinga G (2003) Carbon monoxide conversion by anaerobic bioreactor sludges. FEMS Microbiol Ecol 44:271–277

    Article  PubMed  CAS  Google Scholar 

  • Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Tourova TP, Kato C, Bonch-Osmolovskaya EA, Robb FT (2001) Carboxydobrachium pacificum gen nov, sp nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Micr 51:141–149

    CAS  Google Scholar 

  • Sokolova TG, Kostrikina NA, Chernyh NA, Tourova TP, Kolganova TV, Bonch-Osmolovskaya EA (2002) Carboxydocella thermautotrophica gen. nov., sp nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Micr 52:1961–1967

    Article  CAS  Google Scholar 

  • Sokolova TG, Kostrikina NA, Chernyh NA, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2005) Thermincola carboxydiphila gen nov, sp nov, a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. Int J Syst Evol Micr 55:2069–2073

    Article  CAS  Google Scholar 

  • Souza ME, Fuzaro G, Polegato AR (1992) Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Water Sci Technol 25:213–222

    CAS  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  PubMed  CAS  Google Scholar 

  • Stams AJM, Plugge CM, De Bok FAM, Van Houten BHGW, Lens P, Dijkman H, Weijma J (2005) Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Sci Technol 52:13–20

    PubMed  CAS  Google Scholar 

  • Stover EL, Gomathinayagam G, Gonzalez R (1984) Use of methane from anaerobic treatment of stillage for fuel alcohol production. 39th industrial water conference. Purdue University, West Lafayette, Indiana: Butterworth, Boston, pp 95–104

    Google Scholar 

  • Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144

    Article  PubMed  CAS  Google Scholar 

  • Van Haandel AC (2005) Integrated energy production and reduction of the environmental impact at alcohol distillery plants. Water Sci Technol 52:49–57

    PubMed  Google Scholar 

  • Van Haandel AC, Catunda PFC (1994) Profitability increase of alcohol distilleries by the rational use of byproducts. Water Sci Technol 29:117–124

    Google Scholar 

  • Van Kasteren JMN, van der Waall WR, Guo J, Verberne R (2005) Bio-ethanol from syngas. Eindhoven University of Technology (TU/e), I. &. E, Ed

    Google Scholar 

  • Van Lier JB, Letting G (1999) Appropriate technologies for effective management of industrial and domestic waste waters: the decentralised approach. Water Sci Technol 40:171–183

    Google Scholar 

  • Van Lier JB, Tilche A, Ahring BK, Macarie H, Moletta R, Dohanyos M, Pol LWH, Lens P, Verstraete W (2001) New perspectives in anaerobic digestion. Water Sci Technol 43:1–18

    PubMed  Google Scholar 

  • Vavilin VA, Rytov SV, Lokshina LY (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresour Technol 56:229–237

    Article  CAS  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biot 85:849–860

    Article  CAS  Google Scholar 

  • Yang Z, Guo R, Xu X, Fan X, Li X (2011) Thermo-alkaline pretreatment of lipid-extracted microalgal biomass residues enhances hydrogen production. J Chem Technol Biotechnol 86:454–460

    Article  CAS  Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotech 18:213–219

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costa, J.C., Sousa, D.Z., Pereira, M.A., Stams, A.J.M., Alves, M.M. (2013). Biomethanation Potential of Biological and Other Wastes. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_15

Download citation

Publish with us

Policies and ethics