Skip to main content

Biohydrogen as Biofuel: Future Prospects and Avenues for Improvements

  • Chapter
  • First Online:
Biofuel Technologies

Abstract

Biological hydrogen production is one of the most imperative and demanding areas of research and technology development as a clean, efficient, and sustainable energy option to be considered as imminent fuel. The successful biohydrogen production needs technology improvement, use of updated microbial technologies to generate, and developing innovative proficient methods of biohydrogen production. This review explains the various possibilities toward the advancement of biohydrogen production methods, microbial technology involved in different methods with their benefits and shortcomings. It also spotlights on the avenues for enhancement in biohydrogen production and the future prospects of exploiting biohydrogen as prominent biofuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar MK, Jones PR (2008) Engineering of a synthetic hydF-hydE-hydG-hydA operon for biohydrogen production. Anal Biochem 373:170–172

    Article  PubMed  CAS  Google Scholar 

  • Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300

    Article  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  PubMed  CAS  Google Scholar 

  • Bolton JR (1996) Solar photoproduction of hydrogen: a review. Sol Energy 57(1):37–50

    Article  CAS  Google Scholar 

  • Chang JS, Lee KS, Lin PJ (2002) Biohydrogen production with fixed-bed bioreactors. Int J Hydrogen Energy 27:1167–1174

    Article  CAS  Google Scholar 

  • Chen CY, Chang JS (2006) Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. Process Biochem 41:2041–2049

    Article  CAS  Google Scholar 

  • Das D, Khanna N, VeziroÄŸlu TN (2008) Recent developments in biological hydrogen production processes. Chem Ind Chem Eng Q 14(2):57–67

    Article  CAS  Google Scholar 

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    Article  CAS  Google Scholar 

  • Fascetti E, Todini O (1995) Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat. Appl Microbiol Biotechnol 22:300–305

    Article  Google Scholar 

  • Fedorov AS, Tsygankov AA, Rao KK, Hall DO (1998) Hydrogen photoproduction by Rhodobacter sphaeroides immobilised on polyurethane foam. Biotechnol Lett 20:1007–1009

    Article  CAS  Google Scholar 

  • Ferchichi M, Crabbe E, Gil GH, Hintz W, Almadidy A (2005) Influence of initial pH on hydrogen production from cheese whey. J Biotech 120:402–409

    Article  CAS  Google Scholar 

  • Ishikawa M, Yamamura S, Tamkamura Y, Sode K, Tamiya E, Tomiyama M (2006) Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system. Int J Hydrogen Energy 31(11):1484–1489

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Kondo K, Wakayama T, Miyake J (2006) Efficient hydrogen production using a multilayered photobioreactor and a photo synthetic bacterium with reduced pigment. Int J Hydrogen Energy 31:1522–1526

    Article  CAS  Google Scholar 

  • Kumar N, Das D (2001) Enzyme Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Microbiol Technol 29:280–287

    Article  CAS  Google Scholar 

  • Lee KS, Lo YC, Lin PJ, Chang JS (2006) Improving biohydrogen production in a carrier induced granular sludge bed by altering physical configurarion and agitation pattern of the bioreactor. Int J Hydrogen Energy 31:648–1657

    Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185

    Article  CAS  Google Scholar 

  • Liu H, Got S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga. Chlamydomonas reinhardtii. Plant Physiol 122(1):127–136

    Article  CAS  Google Scholar 

  • Miyake M, Sekine M, Vasilieva LG, Nakada E, Wakayama T, Asada TY (1998) Miyake J. In: Zaborsky OR, Benemann JR, Matsunaga T, Miyake J, San Pietro A (eds) BioHydrogen. Plenum Press, New York, pp 81–86

    Google Scholar 

  • Morimoto K, Kimura T, Sakka K, Ohmiya K (2005) Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett 246:229–234

    Article  PubMed  CAS  Google Scholar 

  • Nath K, Das D (2004) Biohydrogen production as a potential energy resource- Present state of art. J Sci Ind Res 63:729-738

    Google Scholar 

  • O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukorn S, Birkeland NK (2007) Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anerobic sequencing batch reactor. Enzy Microb Technol 41:583–590

    Article  CAS  Google Scholar 

  • Pan J, Zhang R, El-Mashad HM, Sun H, Ying Y (2008) Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrogen Energy 33:6968–6975

    Article  CAS  Google Scholar 

  • Reith ZH, Wijffelo RH, Barten H (2003) Bio-methane and Bio-hydrogen: Status and perspective of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, The Hague

    Google Scholar 

  • Ren NQ, Li JZ, Li BK, Wang Y, Liu SR (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot scale bioreactor system. Int J Hydrogen Energy 31:2147–2157

    Article  CAS  Google Scholar 

  • Schotz F, Schroder U (2003) Baterial batteries. Nature Biotechnol 21:3–4

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Tsygankov AA, Hirata Y, Miyake M, Asada Y, Miyake J (1994) Photobioreactor with photosynthetic bacteria immobilized in porous-glass for hydrogen photoproduction. Ferment Bioeng 77:575–578

    Article  CAS  Google Scholar 

  • Van GSW, Oh SE, Logan BE (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrogen Energy 30:1535–1542

    Article  Google Scholar 

  • Venkata MS, Lalit BV, Sarma PN (2007) Anaerobic biohydrogen production from diary wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzy Microb Technol 41:506–515

    Article  Google Scholar 

  • Vijayaraghavan K, Ahmad D (2006) Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. Int J Hydrogen Energy 31:1284–1291

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Soom MAM (2006) Trends in bio-hydrogen generation—a review. Environ Sci 3(4):255–271

    Article  Google Scholar 

  • Wu KJ, Chang CF, Chang JS (2007) Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge. Process Biochem 42:1165–1171

    Article  CAS  Google Scholar 

  • Wu KJ, Chang JS (2007) Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix. Process Biochem 42:279–284

    Article  CAS  Google Scholar 

  • Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y (1998) Factors affecting hydrogen production from cassava wastewater by a co-culture of anaerobic sludge and Rhodospirillum rubrum. Biotechol Lett 20:890

    Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2006) Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing escherichia coli strains. Appl Microbiol Biotechnol 71(11):6762–6768

    Google Scholar 

  • Zhang T, Liu H, Fang HHP (2003) Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Mang 69:149–156

    Article  Google Scholar 

  • Zurrer H, Bachofen R (1979) Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 37:789–793

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Imam, J., Singh, P.K., Shukla, P. (2013). Biohydrogen as Biofuel: Future Prospects and Avenues for Improvements. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_12

Download citation

Publish with us

Policies and ethics