Skip to main content

Matrix Pseudoinversion for Image Neural Processing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7667))

Abstract

Recently some novel strategies have been proposed for training of Single Hidden Layer Feedforward Networks, that set randomly the weights from input to hidden layer, while weights from hidden to output layer are analytically determined by Moore-Penrose generalised inverse. Such non-iterative strategies are appealing since they allow fast learning, but some care may be required to achieve good results, mainly concerning the procedure used for matrix pseudoinversion. This paper proposes a novel approach based on original determination of the initialization interval for input weights, a careful choice of hidden layer activation functions and on critical use of generalised inverse to determine output weights. We show that this key step suffers from numerical problems related to matrix invertibility, and we propose a heuristic procedure for bringing more robustness to the method. We report results on a difficult astronomical image analysis problem of chromaticity diagnosis to illustrate the various points under study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Halawa, K.: A method to improve the performance of multilayer perceptron by utilizing various activation functions in the last hidden layer and the least squares method. Neural Processing Letters 34, 293–303 (2011)

    Article  Google Scholar 

  3. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme Learning Machine: Theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  4. Nguyen, T.D., Pham, H.T.B., Dang, V.H.: An efficient Pseudo Inverse matrix-based solution for secure auditing. In: IEEE International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future (2010)

    Google Scholar 

  5. Kohno, K., Kawamoto, M., Inouye, Y.: A Matrix Pseudoinversion Lemma and its Application to Block-Based Adaptive Blind Deconvolution for MIMO Systems. IEEE Transactions on Circuits and Systems I 57(7), 1449–1462 (2010)

    Article  MathSciNet  Google Scholar 

  6. Ajorloo, H., Manzuri-Shalmani, M.T., Lakdashti, A.: Restoration of Damaged Slices in Images Using Matrix Pseudo Inversion. In: 22th International Symposium on Computer and Information Sciences, Ankara, pp. 98–104 (2007)

    Google Scholar 

  7. Bini, D., Capovani, M., Menchi, O.: Metodi numerici per l’algebra lineare. Ed. Zanichelli, Bologna (1988)

    Google Scholar 

  8. Bishop, C. M.: Pattern Recognition and Machine Learning. Ed. Springer, Berlin (2006)

    Google Scholar 

  9. Bartlett, P.L.: The sample complexity of pattern classification with neural networks: the size of the weights is more important that the size of the network. IEEE Trans. Inf. Theory 44(2), 525–536 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ortega, J.M.: Matrix Theory. Plenum Press, New York (1987)

    MATH  Google Scholar 

  11. Golub, G., van Loan, C.: Matrix computations. The Johns Hopkins University Press, London (1996)

    MATH  Google Scholar 

  12. Le Gall, J.Y., Saisse, M.: Chromatic Aberration of an All-Reflective Telescope. In: Instrumentation in Astronomy V, London. SPIE, vol. 445, pp. 497–504 (1983)

    Google Scholar 

  13. Perryman, M.A.C., et al.: GAIA - Composition, formation and evolution of the galaxy. Concept and technology study, Rep. and Exec. Summary. In: European Space Agency, ESA-SCI, Munich, Germany, vol. 4 (2000)

    Google Scholar 

  14. Gai, M., Cancelliere, R.: Neural network correction of astrometric chromaticity. MNRAS 362(4), 1483–1488 (2005)

    Article  Google Scholar 

  15. Cancelliere, R., Gai, M.: Efficient computation and Neural Processing of Astrometric Images. Computing and Informatics 28, 711–727 (2009)

    Google Scholar 

  16. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: 13th International Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia, Italy (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cancelliere, R., Gai, M., Artières, T., Gallinari, P. (2012). Matrix Pseudoinversion for Image Neural Processing. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34500-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34500-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34499-2

  • Online ISBN: 978-3-642-34500-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics