Skip to main content

Maximal Margin Approach to Kernel Generalised Learning Vector Quantisation for Brain-Computer Interface

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7665))

Included in the following conference series:

  • 3212 Accesses

Abstract

Kernel Generalised Learning Vector Quantisation (KGLVQ) was proposed to extend Generalised Learning Vector Quantisation into the kernel feature space to deal with complex class boundaries and thus yield promising performance for complex classification tasks in pattern recognition. However KGLVQ does not follow the maximal margin principle which is crucial for kernel-based learning methods. In this paper we propose a maximal margin approach to Kernel Generalised Learning Vector Quantisation algorithm which inherits the merits of KGLVQ and follows the maximal margin principle to favour the generalisation capability. Experiments performed on the well-known data set III of BCI competition II show promising classification results for the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Dis. 2, 121–167 (1998)

    Article  Google Scholar 

  2. Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn., 273–297 (1995)

    Google Scholar 

  3. Crammer, K., Gilad-bachrach, R., Navot, A., Tishby, N.: Margin Analysis of the LVQ Algorithm. In: Advances in Neural Information Processing Systems 2002, pp. 462–469 (2002)

    Google Scholar 

  4. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hammer, B., Villmann, T.: Generalized Relevance Learning Vector Quantization. Neural Netw. 15, 1059–1068 (2002)

    Article  Google Scholar 

  6. Kohonen, T.: Self-organization and Associative Memory, 3rd edn. Springer, Berlin (1989)

    Book  Google Scholar 

  7. Kohonen, T.: Learning Vector Quantization. In: The Handbook of Brain Theory and Neural Networks, pp. 537–540 (1995)

    Google Scholar 

  8. Liu, C.L., Nakagawa, M.: Evaluation of Prototype Learning Algorithms for Nearest-Neighbor Classifier in Application to Handwritten Character Recognition. Pattern Recogn. 34, 601–615 (2001)

    Article  MATH  Google Scholar 

  9. Pfurtscheller, G., Schlögl, A.: Data Set III in BCI Competition II, http://www.bbci.de/competition/ii

  10. Qinand, A.K., Suganthan, P.N.: A Novel Kernel Prototype-Based Learning Algorithm. In: 17th International Conference on Pattern Recognition, pp. 621–624 (2004)

    Google Scholar 

  11. Sato, A.: Discriminative Dimensionality Reduction Based on Generalized LVQ. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 65–72. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Sato, A., Yamada, K.: Generalized Learning Vector Quantization. In: Neural Information Processing Systems Conference, pp. 423–429 (1995)

    Google Scholar 

  13. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le, T., Tran, D., Hoang, T., Sharma, D. (2012). Maximal Margin Approach to Kernel Generalised Learning Vector Quantisation for Brain-Computer Interface. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34487-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34487-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34486-2

  • Online ISBN: 978-3-642-34487-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics