Skip to main content

The ALPHA Apparatus and Procedures

  • Chapter
  • First Online:
Book cover Detection of Trapped Antihydrogen

Part of the book series: Springer Theses ((Springer Theses))

  • 317 Accesses

Abstract

The ALPHA apparatus combines a variety of components and experimental techniques in order to produce, trap, and study antihydrogen. The physics involved in these components and techniques is interesting in its own right—but here it is important to give a general description of the ALPHA experiment and antihydrogen trapping scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    AD website: http://psdoc.web.cern.ch/PSdoc/acc/ad/

  2. 2.

    As shown in Fig. 3.6, a transmission line diagonal to the storage ring is used for the stochastic cooling system. This shortcut allows the beam correction to be applied to the same particles that were measured at the pickup.

  3. 3.

    Some mixing schemes start with the antiprotons at the bottom of a side-well (to be discussed in Sect. 3.4.5). The antiprotons are then rf-driven into the positron plasma to produce antihydrogen. Here again, the presence of electrons would be counter-productive, as the antiprotons would be cooled back into the side-well and would need to be driven back into the positron plasma.

References

  1. T.J. Murphy, C.M. Surko, Phys. Rev. A 46, 5696 (1992)

    Article  ADS  Google Scholar 

  2. R.G. Greaves, M.D. Tinkle, C.M. Surko, Phys. Plasmas 1, 1439 (1994)

    Article  ADS  Google Scholar 

  3. G.B. Andresen et al., (ALPHA Collaboration), Rev. Sci. Instrum. 80, 123701 (2009)

    Google Scholar 

  4. D.L. Eggleston, C.F. Driscoll, B.R. Beck, A.W. Hyatt, J.H. Malmberg, Phys. Fluids B: Plasma Phys. 4, 3432 (1992)

    Article  Google Scholar 

  5. G.B. Andresen, Ph.D. thesis, Aarhus University, 2010

    Google Scholar 

  6. G.B. Andresen et al., (ALPHA Collaboration), Phys. Rev. Lett. 105, 013003 (2010)

    Google Scholar 

  7. D. Möhl, Hyperfine Interact. 109, 33 (1997)

    Article  ADS  Google Scholar 

  8. S. Maury, Hyperfine Interact. 109, 43 (1997)

    Article  ADS  Google Scholar 

  9. D. Möhl, A.M. Sessler, Nucl. Instrum. Methods Phys. Res. A 532, 1 (2004)

    Article  ADS  Google Scholar 

  10. S. van der Meer, CERN, Report No. ISR-PO-72-31, (unpublished) 1972

    Google Scholar 

  11. D. Möhl, G. Petrucci, L. Thorndahl, S. van der Meer, Phys. Rep. 58, 73 (1980)

    Article  ADS  Google Scholar 

  12. G.I. Budker, in Proceedings of International Symposium on Electron and Positron Storage Rings, 1966

    Google Scholar 

  13. H. Poth, Phys. Rep. 196, 135 (1990)

    Article  ADS  Google Scholar 

  14. M. Charlton, J. Humberston, Positron Physics (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  15. M. Amoretti et al., Nucl. Instrum. Methods Phys. Res. A 518, 679 (2004)

    Article  ADS  Google Scholar 

  16. M. Charlton et al., J. Phys.: Conf. Ser. 262, 012001 (2011)

    Google Scholar 

  17. M.H. Holzscheiter, M. Charlton, M.M. Nieto, Phys. Rep. 402, 1 (2004)

    Article  ADS  Google Scholar 

  18. L.V. Jørgensen et al., (ATHENA Collaboration), Phys. Rev. Lett. 95, 025002 (2005)

    Google Scholar 

  19. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    Google Scholar 

  20. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  21. S. Rolston, G. Gabrielse, Hyperfine Interact. 44, 233 (1989)

    Article  ADS  Google Scholar 

  22. L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962)

    Google Scholar 

  23. G.B. Andresen et al., (ALPHA Collaboration), Phys. Lett. B 695, 95 (2011)

    Google Scholar 

  24. G.B. Andresen et al., (ALPHA Collaboration), J. Phys. B: At. Mol. Opt. Phys. 41, 011001 (2008)

    Google Scholar 

  25. D.H.E. Dubin, T.M. O’Neil, Rev. Mod. Phys. 71, 87 (1999)

    Article  ADS  Google Scholar 

  26. G.B. Andresen et al., (ALPHA Collaboration), Phys. Rev. Lett. 100, 203401 (2008)

    Google Scholar 

  27. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  28. W. Ketterle, N.V. Druten, Adv. At. Mol. Opt. Phys. 37, 181 (1996)

    Article  ADS  Google Scholar 

  29. G.B. Andresen et al., (ALPHA Collaboration), Nature 468, 673 (2010)

    Google Scholar 

  30. M. Amoretti et al., (ATHENA Collaboration), Nature 419, 456 (2002)

    Google Scholar 

  31. G. Gabrielse et al., (ATRAP Collaboration), Phys. Rev. Lett. 89, 213401 (2002)

    Google Scholar 

  32. Y. Enomoto et al., Phys. Rev. Lett. 105, 243401 (2010)

    Article  ADS  Google Scholar 

  33. G. Gabrielse et al., (ATRAP Collaboration), Phys. Lett. B 507, 1 (2001)

    Google Scholar 

  34. M. Amoretti et al., (ATHENA Collaboration), Phys. Lett. B 590, 133 (2004)

    Google Scholar 

  35. G. Andresen et al., (ALPHA Collaboration), Phys. Lett. B 685, 141 (2010)

    Google Scholar 

  36. G. Gabrielse et al., (ATRAP Collaboration), Phys. Rev. Lett. 100, 113001 (2008)

    Google Scholar 

  37. J. Fajans, L. Frièdland, Am. J. Phys. 69, 1096 (2001)

    Article  ADS  Google Scholar 

  38. G.B. Andresen et al., (ALPHA Collaboration), Phys. Rev. Lett. 106, 025002 (2011)

    Google Scholar 

  39. W. Bertsche et al., (ALPHA Collaboration), Nucl. Instrum. Methods Phys. Res. A 566, 746 (2006)

    Google Scholar 

  40. G. Andresen et al., (ALPHA Collaboration), Phys. Rev. Lett. 98, 023402 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hydomako .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hydomako, R. (2013). The ALPHA Apparatus and Procedures. In: Detection of Trapped Antihydrogen. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34484-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34484-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34483-1

  • Online ISBN: 978-3-642-34484-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics