Skip to main content

Estimating Neural Firing Rates: An Empirical Bayes Approach

  • Conference paper
  • 2789 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7664))

Abstract

A lot of neurophysiological findings rely on accurate estimates of firing rates. In order to estimate an underlying rate function from sparse observations, i.e., spike trains, it is necessary to perform temporal smoothing over a short time window at each time point. In the empirical Bayes method, in which the assumption for the smoothness is incorporated in the Bayesian prior probability of underlying rate, the time scale of the temporal average, or the degree of smoothness, can be optimized by maximizing the marginal likelihood. Here, the marginal likelihood is obtained by marginalizing the complete-data likelihood over all possible latent rate processes. We carry out this marginalization using a path integral method. We show that there exists a lower bound of rate fluctuations below which the optimal smoothness parameter diverges. We also show that the optimal smoothness parameter obeys asymptotic scaling laws, the exponent of which depends on the smoothness of underlying rate processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Softky, W.R., Koch, C.: The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of Random EPSPs. J. Neurosci. 13, 334–350 (1993)

    Google Scholar 

  2. Kass, R.E., Ventura, V., Brown, E.N.: Statistical Issues in the Analysis of Neuronal Data. J. Neurophysiol. 94, 8–25 (2005)

    Article  Google Scholar 

  3. Shimazaki, H., Shinomoto, S.: A Method for Selecting the Bin Size of a Time Histogram. Neural Comp. 19, 1503–1700 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  5. Cunningham, J.P., Yu, B.M., Shenoy, K.V., Sahani, M.: Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes. In: Neural Information Processing Systems, vol. 20, pp. 329–336 (2008)

    Google Scholar 

  6. Koyama, S., Shinomoto, S.: Empirical Bayes Interpretations of Random Point Events. J. Phys. A: Math. Gen. 38, L531–L537 (2005)

    Google Scholar 

  7. Koyama, S., Shinomoto, S.: Phase Transitions in the Estimation of Event Rate: a Path Integral Analysis. J. Phys. A. Math. Theor. 40, F383–F390 (2007)

    Google Scholar 

  8. Coleman, S.: Aspects of Symmetry. Cambridge University Press (1988)

    Google Scholar 

  9. Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. World Scientific Publishing Company (2009)

    Google Scholar 

  10. Berman, M.: Inhomogeneous and Modulated Gamma Processes. Biometrica 68, 143–152 (1981)

    Article  MATH  Google Scholar 

  11. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer (1997)

    Google Scholar 

  12. Ramsay, J., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer (2010)

    Google Scholar 

  13. Cox, D.R.: Renewal Theory. Chapman and Hall (1962)

    Google Scholar 

  14. Shintani, T., Shinomoto, S.: Detection Limit for Rate Fluctuations in Inhomogeneous Poisson Processes. Phys. Rev. E 85, 041139 (2012)

    Google Scholar 

  15. Koyama, S., Shinomoto, S.: Histogram Bin Width Selection for Time-Dependent Poisson Processes. J. Phys. A: Math. Gen. 37, 7255–7265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koyama, S. (2012). Estimating Neural Firing Rates: An Empirical Bayes Approach. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34481-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34481-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34480-0

  • Online ISBN: 978-3-642-34481-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics