Advertisement

The Brain’s Sequential Parallelism: Perceptual Decision-Making and Early Sensory Responses

  • Tobias Brosch
  • Heiko Neumann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)

Abstract

Multi-stage decision tasks require the determination of intermediate results in order to perform consecutive decision steps. Electrophysiological recordings in sensory, parietal, and pre-frontal cortical areas have demonstrated that different response characteristics and timings at the neuron level provide key mechanisms to implement characteristic functionalities. We propose a hybrid neural model architecture that accounts for such findings and quantitatively reproduces the timing of such responses. We demonstrate by numerical simulations how the model accounts for feature-dependent decisions and how these are sequentialized during mutual interactions of pools of neurons in different cortical areas. Feedback from higher-level areas to early sensory stages of processing establishes a link between mechanisms involved in response integration and target selection to representations of sensory input.

Keywords

Multi-stage decision Electrophysiological recordings Hybrid neural model architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moro, S.I., Tolboom, M., Khayat, P.S., Roelfsema, P.R.: Neuronal Activity in the Visual Cortex Reveals the Temporal Order of Cognitive Operations. J. Neurosci. 30(48), 16293–16303 (2010)CrossRefGoogle Scholar
  2. 2.
    Roelfsema, P.R., Khayat, P.S., Spekreijse, H.: Subtask Sequencing in the Primary Visual Cortex. PNAS 100(9), 5467–5472 (2003)CrossRefGoogle Scholar
  3. 3.
    Ullman, S.: Visual Routines. Cogn. 18(1-3), 97–159 (1984)CrossRefGoogle Scholar
  4. 4.
    O’Reilly, R.C., Frank, M.J.: Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia. Neural Comput. 18(2), 283–328 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brosch, T., Neumann, H.: The Combination of HMAX and HOGs in an Attention Guided Framework for Object Localization. In: ICPRAM, vol. 2, pp. 281–288 (2012)Google Scholar
  6. 6.
    Mutch, J., Knoblich, U., Poggio, T.: CNS: a GPU-based Framework for Simulating Cortically-organized Networks. Tech. rep., MIT, Cambridge, MA, USA (2010)Google Scholar
  7. 7.
    Mutch, J., Lowe, D.G.: Object Class Recognition and Localization using sparse Features with limited Receptive Fields. IJCV 80(1), 45–57 (2008)CrossRefGoogle Scholar
  8. 8.
    Roelfsema, P.R.: Elemental Operations in Vision. TiCS 9(5), 226–233 (2005)Google Scholar
  9. 9.
    Zylberberg, A., Slezak, D.F., Roelfsema, P.R., Dehaene, S., Sigman, M.: The Brain’s Router: A Cortical Network Model of Serial Processing in the Primate Brain. PLoS Comput. Biol. 6(4), 1–23 (2010)CrossRefGoogle Scholar
  10. 10.
    Zylberberg, A., Dehaene, S., Roelfsema, P.R., Sigman, M.: The Human Turing Machine: A Neural Framework for Mental Programs. TiCS 15(7), 293–300 (2011)Google Scholar
  11. 11.
    van der Velde, F., de Kamps, M.: Neural Blackboard Architectures of Combinatorial Structures in Cognition. Behav. Brain Sci. 29(1), 37–108 (2006)Google Scholar
  12. 12.
    Bouecke, J.D., Tlapale, E., Kornprobst, P., Neumann, H.: Neural Mechanisms of Motion Detection, Integration, and Segregation: From Biology to Artificial Image Processing Systems. EURASIP JASP 2011(6), 1–22 (2011)Google Scholar
  13. 13.
    Carpenter, G.A., Grossberg, S.: Pattern Recognition by Self-Organizing Neural Networks. A Bradford Book (1991)Google Scholar
  14. 14.
    Grossberg, S., Pilly, P.K.: Temporal Dynamics of Decision-Making During Motion Perception in the Visual Cortex. Vision Research 48(12), 1345–1373 (2008)CrossRefGoogle Scholar
  15. 15.
    Roitman, J.D., Shadlen, M.N.: Response of Neurons in the Lateral Intraparietal Area During a Combined Visual Discrimination Reaction Time Task. J. Neurosci. 22(21), 9475–9489 (2002)Google Scholar
  16. 16.
    Ungerleider, L.G., Haxby, J.V.: ’What’ and ’Where’ in the Human Brain. Current Opinion in Neurobiol. 4(2), 157–165 (1994)CrossRefGoogle Scholar
  17. 17.
    Hamker, F.H.: The Emergence of Attention by Population-based Inference and its Role in Distributed Processing and Cognitive Control of Vision. Comput. Vision Image Understand. 100, 64–106 (2005)CrossRefGoogle Scholar
  18. 18.
    Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated Theory of the Mind. Psychol. Rev. 111(4), 1036–1060 (2004)CrossRefGoogle Scholar
  19. 19.
    Kveraga, K., Ghuman, A.S., Bar, M.: Top-Down Predictions in the Cognitive Brain. Brain Cogn. 65(2), 145–168 (2007)CrossRefGoogle Scholar
  20. 20.
    Dux, P.E., Tombu, M.N., Harrison, S., Rogers, B.P., Tong, F., Marois, R.: Training Improves Multitasking Performance by Increasing the Speed of Information Processing in Human Prefrontal Cortex. Neuron 63(1), 127–138 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tobias Brosch
    • 1
  • Heiko Neumann
    • 1
  1. 1.Ulm UniversityGermany

Personalised recommendations