Advertisement

Color Fractal Structure Model for Reduced-Reference Colorful Image Quality Assessment

  • Lihuo He
  • Dongxue Wang
  • Xuelong Li
  • Dacheng Tao
  • Xinbo Gao
  • Fei Gao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)

Abstract

Developing reduced reference image quality assessment (RR-IQA) plays a vital role in dealing with the prediction of the visual quality of distorted images. However, most of existing methods fail to take color information into consideration, although the color distortion is significant for the increasing color images. To solve the aforementioned problem, this paper proposed a novel IQA method which focuses on the color distortion. In particular, we extract color features based on the model of color fractal structure. Then the color and structure features are mapped into visual quality using the support vector regression. Experimental results on the LIVE II database demonstrate that the proposed method has a good consistency with the human perception especially on images with color distortion.

Keywords

RR-IQA color fractal structure support vector regression statistical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tao, D.C., Li, X.L., Lu, W., Gao, X.B.: Reduced-reference iqa in contourlet domain. IEEE Trans. Systems, Man, and Cybernetics, Part B 39(6), 1623–1627 (2009)CrossRefGoogle Scholar
  2. 2.
    Gao, X.B., Lu, W., Tao, D.C., Li, X.L.: Image quality assessment based on multiscale geometric analysis. IEEE Trans. Image Processing 18(7), 1409–1423 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Wang, Z., Simoncelli, E.P.: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. In: Human Vision and Electronic Imaging. SPIE, pp. 149–159 (2005)Google Scholar
  4. 4.
    Tao, D.C., Li, X.L., Wu, X.D., Maybank, S.J.: Geometric mean for subspace selection. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 260–274 (2009)CrossRefGoogle Scholar
  5. 5.
    Tao, D.C., Li, X.L., Wu, X.D., Maybank, S.J.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)CrossRefGoogle Scholar
  6. 6.
    Webster, M.A., Mollon, J.D.: Adaptation and the color statistics of natural images. Vision Research 37, 3283–3298 (1997)CrossRefGoogle Scholar
  7. 7.
    Chapeau-Blondeau, F., Chauveau, J., Rousseau, D., Richard, P.: Fractal structure in the color distribution of natural images. Chaos, Solitons Fractals 42(1), 472–482 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intelligent Systems and Technology 2, 27:1–27:27 (2011)Google Scholar
  9. 9.
    Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: Live image quality assessment database release 2 (2003)Google Scholar
  10. 10.
    Rajashekar, U., Wang, Z., Simoncelli, E.P.: Quantifying color image distortions based on adaptive spatio-chromatic signal decompositions. In: International Conference on Image Processing, pp. 2213–2216. IEEE (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lihuo He
    • 1
  • Dongxue Wang
    • 1
  • Xuelong Li
    • 2
  • Dacheng Tao
    • 3
  • Xinbo Gao
    • 1
  • Fei Gao
    • 1
  1. 1.School of Electronic EngineeringXidian UniversityXi’anChina
  2. 2.Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anChina
  3. 3.Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information TechnologyUniversity of TechnologySydneyAustralia

Personalised recommendations