An Orientation Detection Model Based on Fitting from Multiple Local Hypotheses

  • Hui Wei
  • Yuan Ren
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)


Orientation detection is an important step in image understanding. Simple cells in the primary visual cortex are sensitive to stimuli of specific orientation. Hubel and Wiesel’s classical theory attributes orientation selection in a simple cell to the aligned receptive fields of the retinal ganglion cells and the lateral geniculate nucleus cells. It is hypothesized that these receptive fields are similar in size and sub-structure. Current anatomical and electrophysiological evidence is not sufficient to support this geometric-arrangement-based model. Additionally, this feedforward model is incomplete in the implementation details of neural computation. The proposed algebraic model satisfies local constraints from afferent neurons and estimates the orientation of the stimulus. This constraint satisfaction based approach achieves desirable results on challenging image dataset, and can also be used to explain visual illusions.


simple cell receptive field ganglion cell orientation constraint satisfaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso, J.M., Usrey, W.M., Reid, R.C.: Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. Journal of Neuroscience 21(11), 4002–4015 (2001)Google Scholar
  2. 2.
    Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(5), 898–916 (2011)CrossRefGoogle Scholar
  3. 3.
    Azzopardi, G., Petkov, N.: A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model. Biological Cybernetics 106, 177–189 (2012)CrossRefGoogle Scholar
  4. 4.
    Bear, M., Connors, B., Paradiso, M.: Neuroscience: exploring the brain. Lippincott Williams & Wilkins (2007)Google Scholar
  5. 5.
    Cai, D., Tao, L., Shelley, M., McLaughlin, D.W.: An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences of the United States of America 101(20), 7757–7762 (2004)CrossRefGoogle Scholar
  6. 6.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  7. 7.
    Ferster, D., Miller, K.D.: Neural mechanisms of orientation selectivity in the visual cortex. Annual Review of Neuroscience 23, 441–471 (2000)CrossRefGoogle Scholar
  8. 8.
    Hansen, T., Baratoff, G., Neumann, H.: A simple cell model with dominating opponent inhibition for robust contrast detection. Kognitionswissenschaft 9(2), 93–100 (2000)Google Scholar
  9. 9.
    Hough, V.P.C.: Method and means for recognizing complex patterns. US Patent 3,069,654 (1962)Google Scholar
  10. 10.
    Kara, P., Pezaris, J.S., Yurgenson, S., Reid, R.C.: The spatial receptive field of thalamic inputs to single cortical simple cells revealed by the interaction of visual and electrical stimulation. Proceedings of the National Academy of Sciences of the United States of America 99(25), 16261–16266 (2002)CrossRefGoogle Scholar
  11. 11.
    Lauritzen, T.Z., Miller, K.D.: Different roles for simple-cell and complex-cell inhibition in V1. Journal of Neuroscience 23(32), 10201–10213 (2003)Google Scholar
  12. 12.
    Lee, A.B., Blais, B., Shouval, H.Z., Cooper, L.N.: Statistics of lateral geniculate nucleus (LGN) activity determine the segregation of ON/OFF subfields for simple cells in visual cortex. Proceedings of the National Academy of Sciences of the United States of America 97(23), 12875–12879 (2000)CrossRefGoogle Scholar
  13. 13.
    Liu, B.H., Li, P., Sun, Y.J., Li, Y.T., Zhang, L.I., Tao, H.W.: Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nature Neuroscience 13(1), 89 (2010)CrossRefGoogle Scholar
  14. 14.
    Miller, D.A., Zucker, S.W.: Computing with self-excitatory cliques: A model and an application to hyperacuity-scale computation in visual cortex. Neural Computation 11(1), 21–66 (1999)CrossRefGoogle Scholar
  15. 15.
    Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research 5(12), 583–601 (1965)CrossRefGoogle Scholar
  16. 16.
    Sompolinsky, H., Shapley, R.: New perspectives on the mechanisms for orientation selectivity. Current Opinion in Neurobiology 7(4), 514–522 (1997)CrossRefGoogle Scholar
  17. 17.
    Tao, L., Shelley, M., McLaughlin, D., Shapley, R.: An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences of the United States of America 101(1), 366–371 (2004)CrossRefGoogle Scholar
  18. 18.
    Troyer, T.W., Krukowski, A.E., Miller, K.D.: LGN input to simple cells and contrast-invariant orientation tuning: an analysis. Journal of Neurophysiology 87(6), 2741–2752 (2002)Google Scholar
  19. 19.
    Wei, H., Ren, Y., Wu, S.: A mathematical model of a retinal ganglion cell’s response to contrast edges. In: Proceedings of Internaional Conference on Neural Computation Theory and Applications, International Joint Conference on Computational Intelligence, pp. 58–65 (2011)Google Scholar
  20. 20.
    Wielaard, D.J., Shelley, M., McLaughlin, D., Shapley, R.: How simple cells are made in a nonlinear network model of the visual cortex. Journal of Neuroscience 21(14), 5203–5211 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hui Wei
    • 1
  • Yuan Ren
    • 1
  1. 1.Lab of Cognitive Model and Algorithm, School of Computer ScienceFudan UniversityShanghaiChina

Personalised recommendations