Bandit-Based Structure Learning for Bayesian Network Classifiers

  • Sepehr Eghbali
  • Mohammad Hassan Zokaei Ashtiani
  • Majid Nili Ahmadabadi
  • Babak Nadjar Araabi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)


In this work, we tackle the problem of structure learning for Bayesian network classifiers (BNC). Searching for an appropriate structure is a challenging task since the number of possible structures grows exponentially with the number of attributes. We formulate this search problem as a large Markov Decision Process (MDP). This allows us to tackle the problem using sequential decision making methods. Furthermore, we devise a Monte Carlo tree search algorithm to find a tractable solution for the MDP. The use of bandit-based action selection strategy enables us to have a systematic way of guiding the search, making the search in the large space of unrestricted structures tractable. The results of classification on different datasets show that the use of this method can significantly boost the performance of structure learning for BNCs.


Bayesian network classifier Structure learning Reinforcement learning Bandit methods Monte Carlo tree search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine Learning 47(2), 235–256 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Carvalho, A.M., Roos, T.T., Oliveira, A.L., Myllymäki, P., et al.: Discriminative learning of bayesian networks via factorized conditional log-likelihood. Journal of Machine Learning Research (2011)Google Scholar
  3. 3.
    Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning (1993)Google Scholar
  4. 4.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29(2), 131–163 (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    Gaudel, R., Sebag, M., et al.: Feature selection as a one-player game (2010)Google Scholar
  6. 6.
    Gelly, S., Wang, Y.: Exploration exploitation in go: Uct for monte-carlo go. In: Twentieth Annual Conference on Neural Information Processing Systems (NIPS) (2006)Google Scholar
  7. 7.
    Greiner, R., Su, X., Shen, B., Zhou, W.: Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning 59(3), 297–322 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Grossman, D., Domingos, P.: Learning bayesian network classifiers by maximizing conditional likelihood. In: Proceedings of the Twenty-First International Conference on Machine Learning (2004)Google Scholar
  9. 9.
    Keogh, E., Pazzani, M.: Learning augmented bayesian classifiers: A comparison of distribution-based and classification-based approaches. In: Proceedings of the Seventh International Workshop on Artificial Intelligence and Statistics, pp. 225–230. Citeseer (1999)Google Scholar
  10. 10.
    Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Larranaga, P., Poza, M., Yurramendi, Y., Murga, R.H., Kuijpers, C.M.H.: Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(9), 912–926 (2002)CrossRefGoogle Scholar
  12. 12.
    Pernkopf, F., Wohlmayr, M., Tschiatschek, S.: Maximum margin bayesian network classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence (2012)Google Scholar
  13. 13.
    Su, J., Zhang, H., Ling, C.X., Matwin, S.: Discriminative parameter learning for bayesian networks. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1016–1023 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sepehr Eghbali
    • 1
  • Mohammad Hassan Zokaei Ashtiani
    • 1
  • Majid Nili Ahmadabadi
    • 1
    • 2
  • Babak Nadjar Araabi
    • 1
    • 2
  1. 1.Cognitive Robotics Lab, Control and Intelligent Processing Center of Excellence, School of ECE., College of Eng.Univ. of TehranIran
  2. 2.School of Cognitive SciencesInstitute for Research in Fundamental Sciences, IPMIran

Personalised recommendations