An Improved Method to Calculate Phase Locking Value Based on Hilbert-Huang Transform and Its Application

  • Zhang Jin
  • Wang Na
  • Kuang Huan
  • Wang Ru-long
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)


Addressing the problems existing in traditional phase locking value (PLV) calculating method, an improved method based on Hilbert-Huang transform (HHT) is proposed and applied onto a group of hypoxia EEG in this paper. Improved method preprocesses EEG data by ocular artifact elimination and spatial filtering firstly. Then, EEG sub-components withinα frequency band (8-12Hz) are obtained through empirical mode decomposition (EMD) of HHT and chosen as our research object. Finally, Hilbert transform (HT) is applied onto the target EEG sub-components and PLVs among different channels of EEG records are calculated according to the transform result. According to extracted PLVs used as features, normal and hypoxia EEG recorded from 3 subjects can be distinguished effectively. Primarily analysis shows that improved method has potential to be used widely to analyze EEG.


EEG phase synchronization phase locking value HHT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freeman, W.J.: Origin, structure and role of background EEG activity. Part I. Analytic amplitude. Clinical Neurophysiology 115(9), 2077–2088 (2004)CrossRefGoogle Scholar
  2. 2.
    Lachaux, J.-P., Rodrigue, E., Martinerie, J., et al.: Measuring phase synchrony in brain signals. Human Brain Mapping 8(4), 194–208 (1999)CrossRefGoogle Scholar
  3. 3.
    Huang, N.E., Shen, Z., Long, S.R., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society of London 454(4), 899–995 (1998)MathSciNetGoogle Scholar
  4. 4.
    Peters, B.O., Pfurtscheller, G., Hyvbjerg, H.: Automatic differentiation of multichannel EEG signals. IEEE Transactions on Biomedical Engineering 48(1), 111–116 (2001)CrossRefGoogle Scholar
  5. 5.
    McFarland, D.J., McCane, L.M., David, S.V., et al.: Spatial filter selection for EEG-based communication. Electroencephalography and Clinical Neurophysiology 103(3), 386–394 (1997)CrossRefGoogle Scholar
  6. 6.
    Wang, N., Wang, R., Zhu, S., et al.: Hypoxia EEG analysis based on phase synchronization theory. In: Proc. of the 9th IEEE International Conference on Cognitive Informatics, pp. 396–400. IEEE, Beijing (2010)Google Scholar
  7. 7.
    Murray, D.M., Boylan, G.B., Ryan, C.A., Connolly, S.: Early EEG Findings in Hypoxic-Ischemic Encephalopathy Predict Outcomes at 2 Years. Pediatrics 124(3), 459–467 (2009)CrossRefGoogle Scholar
  8. 8.
    Hyvärinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)CrossRefGoogle Scholar
  9. 9.
    Klimesch, W.: EEG-alpha rhythms and memory processes. Int. J. Psychophysiol. 26(1-3), 319–340 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhang Jin
    • 1
  • Wang Na
    • 2
  • Kuang Huan
    • 1
  • Wang Ru-long
    • 1
  1. 1.School of SoftwareHunan UniversityChangshaChina
  2. 2.Computer and Information Engineering CollegeInner Mongolia Normal UniversityHohhotChina

Personalised recommendations