Identification of Diffusion Coefficient in Nonhomogeneous Landscapes

  • Min A
  • John D. Reeve
  • Mingqing Xiao
  • Dashun Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)


Diffusion models have been found in various applications in the study of spatial population dynamics for modeling the species dispersal process in natural environments. Diffusion coefficient is a critical parameter in diffusion equations. In this paper, a new method for estimating the diffusion coefficient of insects is presented in terms of occupancy time and the method can produce any desired accuracy.

The study of modeling biological organism movement behaviors in a nonhomogeneous landscape is critical in investigating the interplay between environmental heterogeneity and organism movements. By constructing a set of eigenvalues, we can characterize the insect biased movement when insect crosses the intersection of two different type of landscape elements. Some numerical examples are provided to illustrate the theoretical outcomes obtained in the paper.


Diffusion Equation Probability Density Edge Behavior Nonhomogeneous Landscape 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cantrell, R.S., Cosner, C.: Diffusion models for population dynamics incorporating individual behavior at boundaries: applications to refuge design. Theoretical Population Biology 55, 189–207 (1999)zbMATHCrossRefGoogle Scholar
  2. 2.
    Cain, M.L.: Models of clonal growth Solidago altissima. Journal of Ecology 78, 501–527 (1990)Google Scholar
  3. 3.
    Cronin, J.T.: Movement and spatial population structure of a prairie planthopper. Ecology 84, 1179–1188 (2003)CrossRefGoogle Scholar
  4. 4.
    Cronin, J.T., Haynes, K.J.: An invasive plant promotes unstable host-parasitoid patch dynamics. Ecology 85, 2772–2782 (2004)CrossRefGoogle Scholar
  5. 5.
    Reeve, J.D., Haynes, K.J., Cronin, J.T.: Diffusion models for animals in complex landscapes: incorporating heterogeneity among substrates, individuals and edge behaviors. The Journal of Animal Ecology 77(5), 898–904 (2008)CrossRefGoogle Scholar
  6. 6.
    Haynes, K.J., Cronin, J.T.: Interpatch movement and edge effects: the role of behavioral responses to the landscape matrix. OIKOS 113, 43–54 (2006)CrossRefGoogle Scholar
  7. 7.
    Haynes, K.J., Cronin, J.T.: Matrix composition affects the spatial ecology of a prairie planthopper. Ecology 79, 2856–2866 (2003)CrossRefGoogle Scholar
  8. 8.
    Ovaskainen, O.: Biased movement at a boundary and conditional occupancy times for diffusion processes. J. Appl. Prob. 40, 557–580 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Pereora, H.M., Daily, G.C., Roughgarden, J.: A framework for assessing the relative vulnerability of species to land-use change. Ecological Application 14(3), 730–742 (2004)CrossRefGoogle Scholar
  10. 10.
    Plant, R.E., Cunningham, R.T.: Analysis of the dispersal of sterile Mediterranean fruit flies (Diptera: Tephritidae) released from a point source. Environmental Entomology 20, 1493–1503 (1991)Google Scholar
  11. 11.
    Ovaskainen, O.: Habitat-specific movement parameters estimated using mark-recapture data and a diffusion model. Ecology 85(1), 242–257 (2004)CrossRefGoogle Scholar
  12. 12.
    Zauderer, E.: Partial Differential Equations of Applied Mathematics. Wiley (2006)Google Scholar
  13. 13.
    Fagan, W.F.: Introducing a “boundary-flux” approach to quantifying insect diffusion rates. Ecology 78(2), 579–587 (1997)Google Scholar
  14. 14.
    Fagan, W.F., Cantrell, R.S., Cosner, C.: How Habitat Edges Change Species Interactions. The American Naturalist 153 (February 1999)Google Scholar
  15. 15.
    Turchin, P.: Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animal and Plants. Sinauer Associates (1998)Google Scholar
  16. 16.
    Penny, J., Lindfield, G.: Numerical Methods Using Matlab. Prentice Hall (1999)Google Scholar
  17. 17.
    Coleman, M.P.: An Introduction to Partial Differential Equations with Matlab. CRC Press (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Min A
    • 1
  • John D. Reeve
    • 2
  • Mingqing Xiao
    • 2
  • Dashun Xu
    • 2
  1. 1.Coppin State UniversityBaltimoreUSA
  2. 2.Southern Illinois UniversityCarbondaleUSA

Personalised recommendations