Advertisement

Wavelet Transform Based Consonant - Vowel (CV) Classification Using Support Vector Machines

  • T. M. Thasleema
  • N. K. Narayanan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)

Abstract

This paper reports a study on static pattern classification technique using Support Vector Machine based Decision Directed Acyclic Graph (DDAG) algorithm for the classification of Malayalam Consonant – Vowel (CV) speech unit utterances. Wavelet Transform (WT) based Normalized Wavelet Hybrid Features (NWHF) by combining both Classical Wavelet Decomposition (CWD) and Wavelet Packet Decomposition (WPD) along with z – score normalization are used to evaluate the performance of the present classifier in speaker independent environment. From the experimental study it is reported that present DDAGSVM algorithms perform well for Malayalam CV speech unit recognition compared to ANN and k – NN in additive noisy condition.

Keywords

Multi resolution analysis Normalized wavelet hybrid features Support vector machines Decision directed acyclic graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)zbMATHGoogle Scholar
  2. 2.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statisitical Pattern Recognition: A Review. IEEE Trans. Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  3. 3.
    Hearst, M.A.: Support Vector Machines. IEEE Intelligent Systems, 18–28 (1998)Google Scholar
  4. 4.
    Platt, J., Cristianini, N., Sbawe-Taylor, J.: Large Margin DAGS for Multiclass Classification. In: Advance in Neural Information Processing System, vol. 12, pp. 547–553 (1999)Google Scholar
  5. 5.
    Mallat, S.: A wavelet Tour of Signal Processing, The Sparse Way. Academic, NewYork (2009)zbMATHGoogle Scholar
  6. 6.
    Soman, K.P., Ramachandran, K.I.: Insight into Wavelets, from Theory to Practice. Prentice Hall of India (2005)Google Scholar
  7. 7.
    Mallat, S.: A Theory for Multi resolution Signal Decomposition: The Wavelet Representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)zbMATHCrossRefGoogle Scholar
  8. 8.
    Vetterly, M., Herley, C.: Wavelets and Filter banks: Theory and Design. IEEE Trans. on Signal Processing 40(9), 2207–2232 (1992)CrossRefGoogle Scholar
  9. 9.
    Shensa, M.J.: Affine Wavelets: Wedding the Atrous and mallat Algorithms. IEEE Trans. on Signal Processing 40, 2464–2482 (1992)zbMATHCrossRefGoogle Scholar
  10. 10.
    Mallat, S.: Multi frequency Channel Decomposition of Images and Wavelet Models. IEEE. Trans on Acoustics, Speech and Signal Processing 37, 2091–2110 (1989)CrossRefGoogle Scholar
  11. 11.
    Daubechies, I.: Ten Lectures on Wavelets. Soc. Appl. Math., Philadelphia (1992)zbMATHCrossRefGoogle Scholar
  12. 12.
    Lindsay, R.W., Percival, D.B., Andrew Rothrock, D.: The Discrete Wavelet Transform and the scale analysis of the surface properties of Sea Ice. IEEE Trans. on Geo Science and Remote Sensing 34(3), 771–787 (1996)CrossRefGoogle Scholar
  13. 13.
    Sheng, Y.: Wavelet Transform-The Transforms and Application Handbook. CRC Press LLC (2000)Google Scholar
  14. 14.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. A Wiley-Inter Science Publications (2006)Google Scholar
  15. 15.
    Tan, Y., Wang, J.: A Support Vector Machine with a Hybrid Kernel and Minimal Vapnik – Chervonenkins Dimension. IEEE Trans. on Knowledge and Data Engineering 10(4), 385–395 (2004)MathSciNetGoogle Scholar
  16. 16.
    Vapnik, V.N.: An Overview of Statistical Learning Theory. IEEE Trans. on Neural Networks 10(5), 988–999 (1999)CrossRefGoogle Scholar
  17. 17.
    Gupta, R., Mittal, A., Singh, K.: A time Series based Feature Extraction Approach for Prediction of Protein Structured Class. EURASIP Journal on Bioinformatics and System Biology (2008)Google Scholar
  18. 18.
    Osuna, E., Freund, R., Girosi, F.: Training Support Vector Machines: An Application to Face Detection. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 17–19 (1997)Google Scholar
  19. 19.
    Pontil, M., Verri, A.: Support Vector Machines for 3D Object Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 20(6), 637–646 (1998)CrossRefGoogle Scholar
  20. 20.
    Thasleema, T.M., Narayanan, N.K.: Normalized Wavelet Hybrid Feature for Consonant Classification in Noisy Environments. In: Aswatha Kumar, M., Selvarani, R., Suresh Kumar, T.V. (eds.) Proceedings of ICAdC. AISC, vol. 174, pp. 285–290. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Kwon, O.-W., Chan, K., Lee, T.-W.: Speech Feature Analysis using Variatioanl Bayesian PCA. IEEE Signal Proc. Letters 10(5) (2003)Google Scholar
  22. 22.
    Samouelian, A.: Knowledge based Approach to Consonant Recognition. In: IEEE International Conf. on ASSP, pp. 77–80 (1994)Google Scholar
  23. 23.
    Cutajar, M., Gatt, E., Grech, I., Casha, O., Micallef, J.: Neural Network Architectures for Speaker Independent Phoneme Recognition. In: 7th International Symposium on Image and Signal Processing Analysis, Croatia, pp. 90–95 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • T. M. Thasleema
    • 1
  • N. K. Narayanan
    • 1
  1. 1.Dept. of Information TechnologyKannur UniveristyIndia

Personalised recommendations