A Real-Time, Event-Driven Neuromorphic System for Goal-Directed Attentional Selection

  • Francesco Galluppi
  • Kevin Brohan
  • Simon Davidson
  • Teresa Serrano-Gotarredona
  • José-Antonio Pérez Carrasco
  • Bernabé Linares-Barranco
  • Steve Furber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)


Computation with spiking neurons takes advantage of the abstraction of action potentials into streams of stereotypical events, which encode information through their timing. This approach both reduces power consumption and alleviates communication bottlenecks. A number of such spiking custom mixed-signal address event representation (AER) chips have been developed in recent years.

In this paper, we present i) a flexible event-driven platform consisting of the integration of a visual AER sensor and the SpiNNaker system, a programmable massively parallel digital architecture oriented to the simulation of spiking neural networks; ii) the implementation of a neural network for feature-based attentional selection on this platform.


Attention Selection Neuromorphic SpiNNaker AER 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knudsen, E.: Fundamental components of attention. Annu. Rev. Neurosci. 30, 57–78 (2007)CrossRefGoogle Scholar
  2. 2.
    Van Rullen, R., Thorpe, S.J.: Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 13(6), 1255–1283 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Lichtsteiner, P., Posch, C., Delbruck, T.: A 128x128 120dB 15us Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J. Solid State Circuits 43, 566–576 (2008)CrossRefGoogle Scholar
  4. 4.
    Lenero-Bardallo, J.A., Serrano-Gotarredona, T., Linares-Barranco, B.: A 3.6 us Latency Asynchronous Frame-Free Event-Driven Dynamic-Vision-Sensor. IEEE Journal of Solid State Circuits 46(6), 1443–1455 (2011)CrossRefGoogle Scholar
  5. 5.
    Sonnleithner, D., Indiveri, G.: A Neuromorphic Saliency-Map based Active Vision System. Neuroinformatics, 1–6 (2011)Google Scholar
  6. 6.
    Indiveri, G., Linares-Barranco, B., Hamilton, T.J., Van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Neuromorphic Silicon Neuron Circuits. Front. Neurosci. 5 (2011)Google Scholar
  7. 7.
    Wijekoon, J.H.B., Dudek, P.: VLSI circuits implementing computational models of neocortical circuits. J. Neurosci. Meth. (2012)Google Scholar
  8. 8.
    Furber, S., Brown, A.: Biologically-Inspired Massively-Parallel Architectures - Computing Beyond a Million Processors. In: 2009 Ninth International Conference on Application of Concurrency to System Design, ACSD 2009, pp. 3–12. IEEE, Washington, DC (2009)CrossRefGoogle Scholar
  9. 9.
    Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz- Vicente, R., Gomez-Rodriguez, F., Camunas-Mesa, L., Berner, R., Rivas-Perez, M., Delbruck, T., Liu, S.C., Douglas, R., Hafliger, P., Jimenez-Moreno, G., Civit Ballcels, A., Serrano-Gotarredona, T., Acosta-Jimenez, A.J., Linares-Barranco, B.: CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensoryprocessing-learning-actuating system for high-speed visual object recognition and tracking. IEEE Trans. Neural. Netw. 20(9), 1417–1438 (2009)CrossRefGoogle Scholar
  10. 10.
    Davies, S., Patterson, C., Galluppi, F.: Interfacing Real-Time Spiking I/O with the SpiNNaker neuromimetic architecture. AJIIPS 11(1) (2010)Google Scholar
  11. 11.
    Davison, A.P., Bruderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.: PyNN: A Common Interface for Neuronal Network Simulators. Front. Neuroinform. 2 (2008)Google Scholar
  12. 12.
    Galluppi, F., Davies, S., Rast, A., Sharp, T., Plana, L., Furber, S.: A Hierarchical Configuration System for a Massively Parallel Neural Hardware Platform. In: ACM (ed.) CF 2012 Proceedings of the 9th Conference on Computing Frontiers, Cagliari, pp. 183–192 (2012)Google Scholar
  13. 13.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE T. Pattern. Anal. 20(11) (1998)Google Scholar
  14. 14.
    Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)CrossRefGoogle Scholar
  15. 15.
    Duncan, J., Humphreys, G.W.: Visual search and stimulus similarity. Psychol. Rev. 96(3), 433–458 (1989)CrossRefGoogle Scholar
  16. 16.
    Plana, L., Furber, S., Temple, S., Khan, M., Shi, Y., Wu, J., Yang, S.: A GALS Infrastructure for a Massively Parallel Multiprocessor. IEEE Design & Test of Computers 24(5), 454–463 (2007)CrossRefGoogle Scholar
  17. 17.
    Brohan, K., Gurney, K., Dudek, P.: Using Reinforcement Learning to Guide the Development of Self-organised Feature Maps for Visual Orienting. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part II. LNCS, vol. 6353, pp. 180–189. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Hubel, D.H.: Eye, Brain, and Vision. Scientific American Library, New York (1988)Google Scholar
  19. 19.
    Noudoost, B., Chang, M.H., Steinmetz, N.A., Moore, T.: Top-down control of visual attention. Current Opinion in Neurobiology 20(2), 183–190 (2010)CrossRefGoogle Scholar
  20. 20.
    Bisley, J.W., Mirpour, K., Arcizet, F., Ong, W.S.: The role of the lateral intraparietal area in orienting attention and its implications for visual search. Eur. J. Neurosci. 33, 1982–1990 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Francesco Galluppi
    • 1
  • Kevin Brohan
    • 2
  • Simon Davidson
    • 1
  • Teresa Serrano-Gotarredona
    • 3
  • José-Antonio Pérez Carrasco
    • 4
  • Bernabé Linares-Barranco
    • 3
  • Steve Furber
    • 1
  1. 1.School of Computer ScienceThe University of ManchesterUnited Kingdom
  2. 2.School of Electronic and Electrical EngineeringThe University of ManchesterUnited Kingdom
  3. 3.Instituto de Microelectrónica de SevillaSevillaSpain
  4. 4.Departemento de Teoría de la Señal y ComunicacionesUniversidad de SevilleSevillaSpain

Personalised recommendations