Advertisement

Time Domain Parameters for Online Feedback fNIRS-Based Brain-Computer Interface Systems

  • Tuan Hoang
  • Dat Tran
  • Khoa Truong
  • Trung Le
  • Xu Huang
  • Dharmendra Sharma
  • Toi Vo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)

Abstract

We investigate time domain parameters called high order moments in functional Near Infrared Spectroscopy (fNIRS) signal and propose to use them as new brain features in fNIRS-based Brain Computer Interface (BCI) research. These high order moments are well appropriate with fNIRS data without any special preprocessing or filtering step. Therefore, they could be used to guide users in feedback fNIRS-based BCI experiments. We performed experiments on motor imagery and person identification problems with the 2nd order moment, 4th order moment and a combination of these moments. Experimental results showed that these features provided high accuracy. For motor imagery problem, our system could achieve accuracy up to 99.5% for subject independent problem and varies between 86.5±5.4% and 97.0±2.1% for subject dependent problem. For person identification problem, our system could achieve accuracy nearly 100%. Comparing with other systems that used non-filtered raw signal as feature, these features are more stable than the raw signal because of noise reduction. We also found that the 2nd order moment alone could be an excellent and efficient feature for fNIRS-based BCI systems.

Keywords

BCI fNIRS high order moment motor imagery person identification Hjorth parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthurs, O.J., Boniface, S.: What Aspect of the fMRI BOLD Signal Best Reflects the Underlying Electrophysiology in Human Somatosensory Cortex? J. Clin. Neurophysiol. 114, 1203–1212 (2003)CrossRefGoogle Scholar
  2. 2.
    Biel, L., Pettersson, O., Philipson, L., Wide, P.: ECG Analysis: a New Approach in Human Identification. IEEE T. Instrum. Meas. 50, 808–812 (2001)CrossRefGoogle Scholar
  3. 3.
    Gottemukkula, V., Derakhshani, R.: Classification-Guided Feature Selection for NIRS-based BCI. In: The 5th International IEEE EMBS Conference on Neural Engineering, Mexico (2011)Google Scholar
  4. 4.
    Hjorth, B.: EEG Analysis Based on Time Domain Properties. Electroenceph. Clin. Neurophysiol. 29, 306–310 (1970)CrossRefGoogle Scholar
  5. 5.
    Hjorth, B.: The Physical Significance of Time Domain Descriptors in EEG Analysis. Electroenceph. Clin. Neurophysiol. 34, 321–325 (1973)CrossRefGoogle Scholar
  6. 6.
    Hoang, T., Tran, D., Truong, K., Nguyen, P., Huang, X., Sharma, D.: High Order Moment Features for NIRS-based Classification Problems. In: The 4th International Conference on Biomolecular Engineering, Viet Nam (2012)Google Scholar
  7. 7.
    Krepki, R., Curio, G., Blankertz, B., Muller, K.R.: Berlin Brain-Computer Interface - The HCI comm. Channel for Discovery. Int. J. Human-Computer Studies 65, 460–477 (2007)CrossRefGoogle Scholar
  8. 8.
    Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A.: Neurophysiological Investigation of the Basis of the fMRI Signal. Nature 412, 150–157 (2001)CrossRefGoogle Scholar
  9. 9.
    Marcel, S., Millan, J.D.R.: Person Authentication Using Brainwaves (EEG) and Maximum A Posteriori Model Adaptation. IEEE T. Pattern Anal. 29, 743–752 (2007)CrossRefGoogle Scholar
  10. 10.
    Navascues, M.A., Sebastian, M.V.: Time Domain Indices and Discrete Power Spectrum in Electroecephalographic Processing. Int. J. of Comp. Mathematics 86, 1968–1978 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Niide, W., Tsubone, T., Wada, Y.: Identification of moving limb using near infrared spectroscopic signals for brain activation. In: Proc. IJCNN 2009, USA (2009) Google Scholar
  12. 12.
    Riera, A., Soria-Frisch, A., Caparrini, M., Grau, C., Ruffini, G.: Unobtrusive Biometric System Based on EEG Analysis. EURASIP J. Adv. in Sig. Processing, 18–25 (2008) Google Scholar
  13. 13.
    Rowe, R.K., Miller, W.A., Ge, N., Robinson, R.M.: U.S. Patent No. 7203345. Washington, DC: U.S. (2007)Google Scholar
  14. 14.
    Sitaram, R., Zhang, H., Guan, C., Thulasidas, M., Hoshi, Y., Ishikawa, A., Shimizu, K., Birbaumer, N.: Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a BCI. J. NeuroImage 34, 1416–1427 (2007)CrossRefGoogle Scholar
  15. 15.
    Villringer, A., Obrig, H.: Near-infrared spectroscopy and imaging. In: Toga, A.W., Mazziotta, J.C. (eds.) Brain Mapping: The Methods. Academic Press, Inc., San Diego (2002)Google Scholar
  16. 16.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: BCIs for communication and control. J. Clinical Neurophysiology 113, 767–791 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tuan Hoang
    • 1
  • Dat Tran
    • 1
  • Khoa Truong
    • 2
  • Trung Le
    • 1
  • Xu Huang
    • 2
  • Dharmendra Sharma
    • 1
  • Toi Vo
    • 2
  1. 1.Faculty of Information Sciences and EngineeringUniversity of CanberraAustralia
  2. 2.Department of Biomedical EngineeringInternational UniversityVietnam

Personalised recommendations