Improving Support Vector Machine Using a Stochastic Local Search for Classification in DataMining

  • Messaouda Nekkaa
  • Dalila Boughaci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)


In this paper, an improved support vector machine using a stochastic local search (SVM+SLS) is studied for the classification problem in Datamining. The proposed approach tries to find a subset of features that maximizes the classification accuracy rate of SVM. Experiments on some datasets are performed to show and compare the effectiveness of the proposed approach. The computational experiments show that the proposed SVM+SLS provides competitive results and finds high quality solutions.


Support vector machine Stochastic Local Search Combinatorial optimisation Classification Cross validation Feature selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Phyu, T.N.: Survey of Classification Techniques in Data Mining. In: Proceedings of the International Multi Conference of Engineers and Computer Scientists, Hong Kong, pp. 18–20 (2009)Google Scholar
  2. 2.
    Burgers, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)CrossRefGoogle Scholar
  3. 3.
    Tan, K.C., Teoh, E.J., Yua, Q., Goh, K.C.: A Hybrid Evolutionary Algorithm for Attribute Selection in Data Mining. Expert Syst. with Appl. 36, 8616–8630 (2009)CrossRefGoogle Scholar
  4. 4.
    Boughaci, D., Benhamou, B., Drias, H.: Local Search Methods for the Optimal Winner Determination Problem in Combinatorial Auctions. J. Math. Modell. Algorithm 9, 165–180 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Addison Wesley, Massachusetts (2006)Google Scholar
  6. 6.
    Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)zbMATHGoogle Scholar
  7. 7.
    Vapnik, V.N.: The Natural of Statistical Learning theory. Springer, New York (1995)Google Scholar
  8. 8.
    Kecman, V.: Learning and Soft Computing: Support Vector machines. Neural Networks, and Fuzzy logic Models. The MIT Press, London (2001)zbMATHGoogle Scholar
  9. 9.
    Li, Y., Tong, Y., Bai, B., Zhang, Y.: An Improved Particle Swarm Optimization for SVM Training. In: Third International Conference on Natural Computation (ICNC 2007), pp. 611–615 (2007)Google Scholar
  10. 10.
    Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann, San Mateo (2006)zbMATHGoogle Scholar
  11. 11.
    Zhili, W.: Kernel Based Learning Methods for Pattern and Feature Analysis. Ph.D Thesis Hong Kong Baptist University (2004)Google Scholar
  12. 12.
    Chang, C.C., Lin, C.J.: LIBSVM: a Library for Support Vector Machines (2001), Software available at
  13. 13.
    Chang, C.C., Lin, C.J.: LIBSVM: a Library for Support Vector Machines (2001), Data sets available at
  14. 14.
    Waikato Environment for Knowledge Analysis (WEKA), Version 3.6.6 (c) 1999-2011, The University of Waikato, Hmilton, New Zealand, Software available at

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Messaouda Nekkaa
    • 1
  • Dalila Boughaci
    • 2
  1. 1.LIMOSE/UMBB- Faculté des sciences BoumerdesBoumerdesAlgérie
  2. 2.LRIA/USTHBBeb-EzzoaurAlgérie

Personalised recommendations