Advertisement

Power-Law Scaling of Synchronization Robustly Reproduced in the Hippocampal CA3 Slice Culture Model with Small-World Topology

  • Toshikazu Samura
  • Yasuomi D. Sato
  • Yuji Ikegaya
  • Hatsuo Hayashi
  • Takeshi Aihara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)

Abstract

The hippocampal CA3 is a recurrent network included small-world topology. The percentage of co-active neurons in CA3 slice cultures is approximated by power-law. We show that the power-law scaling of synchronization is reproduced in the CA3 slice culture model where synaptic weights are log-normally distributed and balanced excitation/inhibition regardless of network topologies. However, small-world topology improves the robustness of the reproduction of the power-law scaling in the culture model. Power-law scaling is known as a sign of optimization of a network for information processing. These results suggest that CA3 may be robustly optimized for information processing by excitation/inhibition balance, log-normally distributed synaptic weights and small-world topology.

Keywords

Hippocampal CA3 Synchronization Power-law scaling Log-normal distribution Excitation/inhibition balance Small-world topology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Traub, R.D., Miles, R.: Neuronal Networks of the Hippocampus. Cambridge Univ. Press, New York (1991)CrossRefGoogle Scholar
  2. 2.
    Takahashi, N., Sasaki, T., Matsumoto, W., Matsuki, N., Ikegaya, Y.: Circuit Topology for Synchronizing Neurons in Spontaneously Active Networks. Proc. Natl. Acad. Sci. USA 107, 10244–10249 (2010)CrossRefGoogle Scholar
  3. 3.
    Beggs, J.M., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003)Google Scholar
  4. 4.
    Shew, W.L., Yang, H., Petermann, T., Roy, R., Plenz, D.: Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J. Neurosci. 29, 15595–15600 (2009)CrossRefGoogle Scholar
  5. 5.
    Shew, W.L., Yang, H., Yu, S., Roy, R., Plenz, D.: Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. J. Neurosci. 31, 55–63 (2011)CrossRefGoogle Scholar
  6. 6.
    Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)CrossRefGoogle Scholar
  7. 7.
    Klaus, A., Yu, S., Plenz, D.: Statistical analyses support power law distributions found in neuronal avalanches. PloS One 6, e19779 (2011)Google Scholar
  8. 8.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  9. 9.
    Song, S., Sjostrom, P.J., Reigl, M., Nelson, S., Chklovskii, D.B.: Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Toshikazu Samura
    • 1
  • Yasuomi D. Sato
    • 2
    • 3
  • Yuji Ikegaya
    • 4
  • Hatsuo Hayashi
    • 2
  • Takeshi Aihara
    • 1
  1. 1.Tamagawa University Brain Science InstituteMachidaJapan
  2. 2.Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyWakamatsu-kuJapan
  3. 3.Frankfurt Institute for Advanced Studies (FIAS)Johann Wolfgang Goethe UniversityFrankfurt am MainGermany
  4. 4.Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan

Personalised recommendations