The Elastic Net as Visual Category Representation: Visualisation and Classification

  • Dror Cohen
  • Andrew P. Papliński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)


In this paper we use the Elastic Net (EN) [9] as a visual category representation in feature space. We do this by training the EN on the high dimensional Pyramid Histogram of Visual Words (PHOW) features [2] often used in modern visual categorisation. By employing the topography preserving properties of the EN we visualise the features and draw some novel conclusions. We demonstrate how the EN can also be used as a Region of Interest detector [1]. Finally, inspired by biological vision we propose a new Visual Categorisation scheme that uses ENs as visual category representations. Our method shows promising results when tested on the Caltech101 [12] data set with several interesting future directions.


Elastic Net Visual Categorisation Object Recognition Caltech101 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. Image Processing 5(2), 401–408 (2007)Google Scholar
  2. 2.
    Bosch, A., Zisserman, A., Munoz, X.: Image Classification using Random Forests and Ferns. In: Proc. ICCV, vol. 21, pp. 1–8 (2007)Google Scholar
  3. 3.
    Carreira-Perpinan, M.: Generalised elastic nets (2003),
  4. 4.
    Carreira-Perpiñán, M.Á., Dayan, P., Goodhill, G.J.: Differential Priors for Elastic Nets. In: Gallagher, M., Hogan, J.P., Maire, F. (eds.) IDEAL 2005. LNCS, vol. 3578, pp. 335–342. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: Proc. BMVC 2011, pp. 1–12 (2011)Google Scholar
  6. 6.
    Cohen, D., Papliński, A.P.: A comparative evaluation of the Generative Topographic Mapping and the Elastic Net for the formation of Ocular Dominance stripes. In: Proc. WCCI–IJCNN, pp. 3237–3244. IEEE (2012)Google Scholar
  7. 7.
    Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. Earth 1, 22 (2004)Google Scholar
  8. 8.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood for Incomplete Data via the EM Algorithm. J. Royal Statistical Society B 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Durbin, R., Willshaw, D.: An analogue approach to the travelling salesman problem using an elastic net method. Nature 326(6114), 689–691 (1987)CrossRefGoogle Scholar
  10. 10.
    Durbin, R., Szeliski, R., Yuille, A.: An analysis of the Elastic Net Approach to the Traveling Salesman Problem. Neural Computation 1(3), 348–358 (1989)CrossRefGoogle Scholar
  11. 11.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) Challenge. Int. J. Computer Vision 88(2), 303–338 (2010)CrossRefGoogle Scholar
  12. 12.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning Generative Visual Models from Few Training Examples. In: Proc. CVPR (2004, 2008)Google Scholar
  13. 13.
    Goodhill, G.J.: Contributions of theoretical modeling to the understanding of neural map development. Neuron 56(2), 301–311 (2007)CrossRefGoogle Scholar
  14. 14.
    Gross, C.G.: Coding for visual categories in the human brain. Nature Neuroscience 3(9), 855–856 (2000)CrossRefGoogle Scholar
  15. 15.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In: Proc. CVPR, vol. 2, pp. 2169–2178 (2006)Google Scholar
  16. 16.
    Lefebvre, G., Garcia, C.: A probabilistic Self-Organizing Map for facial recognition. In: Proc. ICPR, pp. 1–4 (2008)Google Scholar
  17. 17.
    MATLAB: R2012a, The MathWorks Inc. (2012)Google Scholar
  18. 18.
    Mutch, J., Lowe, D.G.: Multiclass Object Recognition with Sparse, Localized Features. In: Proc. CVPR, vol. 1, pp. 11–18 (2006)Google Scholar
  19. 19.
    Olier, I., Vellido, A.: Variational Bayesian Generative Topographic Mapping. J. Mathematical Modelling and Algorithms 7, 371–387 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Serre, T., Wolf, L., Poggio, T.: Object Recognition with Features Inspired by Visual Cortex. In: Proc. CVPR, vol. 2, pp. 994–1000 (2005)Google Scholar
  21. 21.
    Sfikas, G., Constantinopoulos, C., Likas, A., Galatsanos, N.P.: An analytic distance metric for Gaussian mixture models with application in image retrieval. Framework, 835–840 (2005)Google Scholar
  22. 22.
    Utsugi, A.: Density estimation by mixture models with smoothing priors. Neural Computation 10(8), 2115–2135 (1998)CrossRefGoogle Scholar
  23. 23.
    Vedaldi, A., Fulkerson, B.: VLFeat: An Open and Portable Library of Computer Vision Algorithms (2008),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dror Cohen
    • 1
  • Andrew P. Papliński
    • 1
  1. 1.Clayton School of ITMonash UniversityAustralia

Personalised recommendations