Advertisement

Optimization of SIRMs Fuzzy Model Using Łukasiewicz Logic

  • Takashi Mitsuishi
  • Takanori Terashima
  • Yasunari Shidama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)

Abstract

The purpose of this study is to prove the existence of single input rule modules which minimize the performance functional of the feedback control using SIRMs fuzzy reasoning method. A bounded product (Łukasiewicz t-norm) and a bounded sum (Łukasiewicz t-conorm) are applied to the operations in SIRMs fuzzy reasoning for interpreting “ands” and “ors” respectively.

Keywords

SIRMs approximate reasoning method Bounded product Bounded sum Calculus of variations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Springer, Netherlands (2009)zbMATHGoogle Scholar
  2. 2.
    Mizumoto, M.: Fuzzy Conditional Inference under Max-⊙ Composition. Inform. Sci. 27(2), 183–209 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Yubazaki, N., Yi, J., Hirota, K.: A Proposal of SIRMs (Single Input Rule Modules) Connected Fuzzy Inference Model for Plural Input Fuzzy Control. J. Japan Society for Fuzzy Theory Syst. 9(5), 699–709 (1997)Google Scholar
  4. 4.
    Seki, H., Ishii, H., Mizumoto, M.: On the Generalization of Single Input Rule Modules Connected Type Fuzzy Reasoning Method. In: Proc. Joint 3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on Advanced Intelligent Systems 2006, pp. 30–34 (2006)Google Scholar
  5. 5.
    Mitsuishi, T., Kawabe, J., Wasaki, K., Shidama, Y.: Optimization of Fuzzy Feedback Control Determined by Product-Sum-Gravity Method. J. Nonlin. Convex Anal. 1(2), 201–211 (2000)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Mitsuishi, T., Shidama, Y.: Optimal Control Using Functional Type SIRMs Fuzzy Reasoning Method. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011, Part II. LNCS, vol. 6792, pp. 237–244. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Mitsuishi, T., Terashima, T., Homma, T., Shidama, Y.: Fuzzy Approximate Reasoning Using Single Input Rule Modules in L ∞  Space. In: Proc. IEEE AFRICON, pp. 1–6 (2011)Google Scholar
  8. 8.
    Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover Publications, New York (1990)zbMATHGoogle Scholar
  9. 9.
    Dunford, N., Schwartz, J.T.: Linear Operators Part I: General Theory. John Wiley & Sons, New York (1988)zbMATHGoogle Scholar
  10. 10.
    Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, New York (1982)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Takashi Mitsuishi
    • 1
  • Takanori Terashima
    • 2
  • Yasunari Shidama
    • 3
  1. 1.University of Marketing and Distribution SciencesKobeJapan
  2. 2.Center for Green ComputingNagoya Institute of TechnologyNagoyaJapan
  3. 3.Shinshu UniversityNaganoJapan

Personalised recommendations