Skip to main content

Adaptive Dynamic Control of Quadrupedal Robotic Gaits with Artificial Reaction Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7663))

Abstract

The Artificial Reaction Network (ARN) is a bio-inspired connectionist paradigm based on the emerging field of Cellular Intelligence. It has properties in common with both AI and Systems Biology techniques including Artificial Neural Networks, Petri Nets, and S-Systems. In this paper, elements of temporal dynamics and pattern recognition are combined within a single ARN control system for a quadrupedal robot. The results show that the ARN has similar applicability to Artificial Neural Network models in robotic control tasks. In comparison to neural Central Pattern Generator models, the ARN can control gaits and offer reduced complexity. Furthermore, the results show that like spiky neural models, the ARN can combine pattern recognition and complex temporal control functionality in a single network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ford, B.J.: Are cells Ingenious? The Microscope 52, 135–144 (2004)

    Google Scholar 

  2. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature 407(6803), 470–470 (2000)

    Article  Google Scholar 

  3. Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae Anticipate Periodic Events. Phys. Rev. 100(1), 1–4 (2008)

    Google Scholar 

  4. Bray, D.: Protein molecules as computational elements in living cells. Nature 376(6538), 307–312 (1995)

    Article  Google Scholar 

  5. Arkin, A., Ross, J.: Computational functions in biochemical reaction networks. Biophys. J. 67, 560–578 (1994)

    Article  Google Scholar 

  6. Wang, B., Kitney, R.I., Joly, N., Buck, M.: Engineering Modular and Orthogonal genetic logic gates for robust digital-like synthetic biology. Nat. Commun. 2, 508 (2011)

    Article  Google Scholar 

  7. Hellingwerf, K.J.: Bacterial observations: a rudimentary form of intelligence. T. I. M. 13(4), 152–158 (2005)

    Google Scholar 

  8. Bhalla, U.S.: Understanding complex signaling networks through models and metaphors. Prog. Biophys. Mol. Biol. 81, 41–65 (2003)

    Article  Google Scholar 

  9. Kholodenko, B.: Cell Signaling dynamics in Time and Space. Nature Rev. Mol. Cell Biol. 7(3), 165–176 (2006)

    Article  Google Scholar 

  10. Gerrard, C.E., McCall, J., Coghill, G.M., Macleod, C.: Artificial Reaction Networks. In: Proceedings of the 11th UK Workshop on Computational Intelligence, Manchester, UK, pp. 20–26 (2011)

    Google Scholar 

  11. Morris, J.G.: A Biologist’s Physical Chemistry. In: Barrington, E.J.W., Willis, A.J. (eds.), 2nd edn. Edward Arnold, Great Britain (1974)

    Google Scholar 

  12. Dagg, A.I.: Gaits in mammals. Mammal. Rev. 3, 135–154 (1973)

    Article  Google Scholar 

  13. Hildebrand, M.: Analysis of asymmetrical gaits. J. Mammal. 58, 131–156 (1977)

    Article  Google Scholar 

  14. Collins, J.J., Richmond, S.A.: Hard-wired central pattern generators for quadrupedal robots. Biol. Cybern. 71, 375–385 (1994)

    Article  MATH  Google Scholar 

  15. Toth, D., Parker, G.: Evolving Gaits for the Lynx motion Hexapod II Robot. In: Proceedings of the 7th World Multiconference on Systems, Cybernetics, and Informatics, Orlando, USA, vol. 3, pp. 229–234 (2003)

    Google Scholar 

  16. Billard, A., Ijspeert, A.J.: Biologically inspired neural controllers for motor control in quadruped robot. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, pp. 637–641. IEEE, Italy (2000)

    Google Scholar 

  17. Yegnanarayana, B.: Artificial neural networks for pattern recognition. Sadhana 19, 147–169 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerrard, C.E., McCall, J., Coghill, G.M., Macleod, C. (2012). Adaptive Dynamic Control of Quadrupedal Robotic Gaits with Artificial Reaction Networks. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34475-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34475-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34474-9

  • Online ISBN: 978-3-642-34475-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics