Skip to main content

A Symbolic Representation Method to Preserve the Characteristic Slope of Time Series

  • Conference paper
Book cover Advances in Artificial Intelligence - SBIA 2012 (SBIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7589))

Included in the following conference series:

Abstract

In recent years many studies have been proposed for knowledge discovery in time series. Most methods use some technique to transform raw data into another representation. Symbolic representations approaches have shown effectiveness in speedup processing and noise removal. The current most commonly used algorithm is the Symbolic Aggregate Approximation (SAX). However, SAX doesn’t preserve the slope information of the time series segments because it uses only the Piecewise Aggregate Approximation for dimensionality reduction. In this paper, we present a symbolic representation method to dimensionality reduction and discretization that preserves the behavior of slope characteristics of the time series segments. The proposed method was compared with the SAX algorithm using artificial and real datasets with 1-nearest-neighbor classification. Experimental results demonstrate the method effectiveness to reduce the error rates of time series classification and to keep the slope information in the symbolic representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fu, T.C.: A review on time series data mining. Engineering Applications of Artificial Intelligence 24, 164–181 (2010)

    Article  Google Scholar 

  2. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery 15, 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  3. Laxman, S., Sastry, P.S.: A survey of temporal data mining. Sadhana 31, 173–198 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Antunes, C.M., Oliveira, A.L.: Temporal Data Mining: an overview. In: KDD Workshop on Temporal Data Mining, pp. 1–13 (2001)

    Google Scholar 

  5. Karamitopoulos, L., Evagelidis, G.: Current Trends in Time Series Representation. In: Proceedings of 11th Panhellenic Conference on Informatics, pp. 217–226 (2007)

    Google Scholar 

  6. Hugueney, B.: Adaptive Segmentation-Based Symbolic Representations of Time Series for Better Modeling and Lower Bounding Distance Measures. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 545–552. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Pham, N.D., Le, Q.L., Dang, T.K.: Two Novel Adaptive Symbolic Representations for Similarity Search in Time Series Databases. In: Conference International AsiaPacific Web, pp. 181–187 (2010)

    Google Scholar 

  8. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Time 1, 1542–1552 (2008)

    Google Scholar 

  9. Morchen, F., Ultsch, A.: Optimizing time series discretization for knowledge discovery. In: Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD 2005, pp. 660–665 (2005)

    Google Scholar 

  10. Das, G., Ip Lin, K., Mannila, H., Renganathan, G., Smyth, P.: Rule discovery from time series, pp. 16–22. AAAI Press (1998)

    Google Scholar 

  11. Giles, C.L., Lawrence, S., Tsoi, A.C.: Noisy Time Series Prediction using a Recurrent Neural Network and Grammatical Inference. Neural Networks 44, 161–183 (2001)

    MATH  Google Scholar 

  12. Li, H., Guo, C., Qiu, W.: Similarity measure based on piecewise linear approximation and derivative dynamic time warping for time series mining. Expert Systems with Applications (2011)

    Google Scholar 

  13. Alonso, F., Martínez, L., Pérez, A., Santamaría, A., Valente, J.P.: Modelling Medical Time Series Using Grammar-Guided Genetic Programming. In: Perner, P. (ed.) ICDM 2008. LNCS (LNAI), vol. 5077, pp. 32–46. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Andre-Jonsson, H., Badal, D.Z.: Using Signature Files for Querying Time-Series Data. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 211–220. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  15. Huang, Y.W., Yu, P.S.: Adaptive query processing for time-series data. In: Proceedings of the Fifth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, KDD 1999, pp. 282–286 (1999)

    Google Scholar 

  16. Bagnall, A.J., Janacek, G.J.: Clustering time series from arma models with clipped data. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 49–58. ACM (2004)

    Google Scholar 

  17. Megalooikonomou, V., Faloutsos, C.: A Multiresolution Symbolic Representation of Time Series. In: 21st International Conference on Data Engineering ICDE 2005, pp. 668–679 (2005)

    Google Scholar 

  18. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery DMKD 2003, pp. 2–11 (2003)

    Google Scholar 

  19. Keogh, E., Zhu, Q., Hu, B., Hao. Y., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR Time Series Classification/Clustering Homepage (2011), www.cs.ucr.edu/~eamonn/time_series_data/

  20. Batyrshin, I., Sheremetov, L.: Perception-based approach to time series data mining. Applied Soft Computing 8, 1211–1221 (2008)

    Article  Google Scholar 

  21. Lkhagva, B., Suzuki, Y., Kawagoe, K.: Time Series Representation ESAX for Financial Applications. In: Proceedings of the 22nd International Conference on Data Engineering Workshops, p. 115 (2006)

    Google Scholar 

  22. Gorecki, T., Luczak, M.: Using derivatives in time series classification. Data Mining and Knowledge Discovery, 1–22 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zalewski, W., Silva, F., Wu, F.C., Lee, H.D., Maletzke, A.G. (2012). A Symbolic Representation Method to Preserve the Characteristic Slope of Time Series. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds) Advances in Artificial Intelligence - SBIA 2012. SBIA 2012. Lecture Notes in Computer Science(), vol 7589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34459-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34459-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34458-9

  • Online ISBN: 978-3-642-34459-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics