Skip to main content

Projective and Affine Spaces

  • Chapter
Diagram Geometry

Abstract

In Definitions 5.2.1 and 5.1.1, projective and affine spaces were introduced by means of axioms, and in Propositions 5.2.2 and 5.1.3, the spaces ℙ(V) and \(\mathbb {A}(V)\), where V is a vector space, were shown to be examples. In this chapter we show that by and large there are no further examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Artin, Coordinates in affine geometry. Rep. Math. Colloq. (2) 2, 15–20 (1940)

    MathSciNet  Google Scholar 

  2. E. Artin, Geometric Algebra (Interscience, New York, 1957)

    MATH  Google Scholar 

  3. R. Baer, Homogeneity of projective planes. Am. J. Math. 64, 137–152 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Baer, Linear Algebra and Projective Geometry (Academic Press, New York, 1952)

    MATH  Google Scholar 

  5. G. Birkhoff, Combinatorial relations in projective geometries. Ann. Math. (2) 36, 743–748 (1935)

    Article  MathSciNet  Google Scholar 

  6. G. Bol, Gewebe und gruppen. Math. Ann. 114, 414–431 (1937)

    Article  MathSciNet  Google Scholar 

  7. R.H. Bruck, A Survey of Binary Systems. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 20. Reihe: Gruppentheorie (Springer, Berlin, 1958)

    MATH  Google Scholar 

  8. F. Buekenhout, Une caractérisation des espaces affins basée sur la notion de droite. Math. Z. 111, 367–371 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Buekenhout, Foundations of one dimensional projective geometry based on perspectivities. Abh. Math. Semin. Univ. Hamb. 43, 21–29 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. R.W. Carter, Simple Groups of Lie Type. Wiley Classics Library (Wiley, New York, 1989). Reprint of the 1972 original, A Wiley–Interscience Publication

    MATH  Google Scholar 

  11. O. Chein, H.O. Pflugfelder, J.D.H. Smith (eds.), Quasigroups and Loops: Theory and Applications. Sigma Series in Pure Mathematics, vol. 8 (Heldermann, Berlin, 1990)

    Google Scholar 

  12. W.-L. Chow, On the geometry of algebraic homogeneous spaces. Ann. Math. (2) 50, 32–67 (1949)

    Article  MATH  Google Scholar 

  13. A.M. Cohen, G. Ivanyos, Root filtration spaces from Lie algebras and abstract root groups. J. Algebra 300, 433–454 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. A.M. Cohen, G. Ivanyos, Root shadow spaces. Eur. J. Comb. 28, 1419–1441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Cuypers, Affine Grassmannians. J. Comb. Theory, Ser. A 70, 289–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. T. De Medts, Y. Segev, A course on Moufang sets. Innov. Incid. Geom. 9, 79–122 (2009)

    MATH  Google Scholar 

  17. J. Doyen, X. Hubaut, Finite regular locally projective spaces. Math. Z. 119, 83–88 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Gorenstein, R. Lyons, R. Solomon, General group theory, in The Classification of the Finite Simple Groups. Number 2. Part I. Chap. G. Mathematical Surveys and Monographs, vol. 40 (American Mathematical Society, Providence, 1996)

    Google Scholar 

  19. J. Gray, A course in the history of geometry in the 19th century, in Worlds Out of Nothing. Springer Undergraduate Mathematics Series (Springer, London, 2007)

    Google Scholar 

  20. J.W.P. Hirschfeld, Projective Geometries over Finite Fields, 2nd edn. Oxford Mathematical Monographs (Clarendon/Oxford University Press, New York, 1998)

    MATH  Google Scholar 

  21. D.R. Hughes, F.C. Piper, Projective Planes. Graduate Texts in Mathematics, vol. 6 (Springer, New York, 1973)

    MATH  Google Scholar 

  22. H. Lüneburg, Ein neuer Beweis eines Hauptsatzes der projektiven Geometrie. Math. Z. 87, 32–36 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Lüneburg, Über die Struktursätze der projektiven Geometrie. Arch. Math. (Basel) 17, 206–209 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Moufang, Zur Struktur von Alternativkörpern. Math. Ann. 110, 416–430 (1935)

    Article  MathSciNet  Google Scholar 

  25. F.R. Moulton, A simple non-Desarguesian plane geometry. Trans. Am. Math. Soc. 3, 192–195 (1902)

    Article  MathSciNet  MATH  Google Scholar 

  26. G.P. Nagy, P. Vojtěchovský, The Moufang loops of order 64 and 81. J. Symb. Comput. 42, 871–883 (2007)

    Article  MATH  Google Scholar 

  27. M. Pankov, Isometric embeddings of Johnson graphs in Grassmann graphs. J. Algebr. Comb. 33, 555–570 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. H.O. Pflugfelder, Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics, vol. 7 (Heldermann, Berlin, 1990)

    Google Scholar 

  29. G. Pickert, Projektive Ebenen. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, vol. LXXX (Springer, Berlin, 1955)

    Book  MATH  Google Scholar 

  30. B. Segre, Lectures on Modern Geometry. With an Appendix by Lucio Lombardo-Radice. C onsiglio Nazionale delle Ricerche Monografie Matematiche, vol. 7 (Edizioni Cremonese, Rome, 1961)

    MATH  Google Scholar 

  31. E. Shult, Geometric hyperplanes of embeddable Grassmannians. J. Algebra 145, 55–82 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. E.E. Shult, Points and Lines. Universitext. (Springer, Heidelberg, 2011). Characterizing the classical geometries

    Book  MATH  Google Scholar 

  33. A.P. Sprague, Rank 3 incidence structures admitting dual-linear, linear diagram. J. Comb. Theory, Ser. A 38, 254–259 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. F.G. Timmesfeld, Abstract Root Subgroups and Simple Groups of Lie Type. Monographs in Mathematics, vol. 95 (Birkhäuser, Basel, 2001)

    Book  MATH  Google Scholar 

  35. J. Tits, R.M. Weiss, Moufang Polygons. Springer Monographs in Mathematics (Springer, Berlin, 2002)

    MATH  Google Scholar 

  36. J. Überberg, Foundations of Incidence Geometry: Projective and Polar Spaces. Springer Monographs in Mathematics (Springer, Berlin, 2011)

    MATH  Google Scholar 

  37. O. Veblen, J.W. Young, Projective Geometry. Vols. 1, 2 (Blaisdell/Ginn, New York, 1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buekenhout, F., Cohen, A.M. (2013). Projective and Affine Spaces. In: Diagram Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34453-4_6

Download citation

Publish with us

Policies and ethics