Skip to main content

Nanoimprint Lithography Process

  • Chapter
  • First Online:
  • 2354 Accesses

Abstract

It is well known now that a nanoimprint lithography process generally consists of stamp modification, spin coating of resist, imprinting, and then etching for pattern transfer. The stamp modification has been already demonstrated in Chap. 4. Before imprinting, the substrate surface is coated by a thin film for imprinting; how to create a uniform imprinted film is a crucial issue. The spin coating is generally a common method to control film thickness. There are three main nanoimprint lithography techniques: hot embossing (HE), UV-based nanoimprint lithography (UV-NIL), and soft lithography. Various soft lithography techniques have been proposed such as microcontact printing (μCP), replica molding (REM), microtransfer molding (μTM), micromolding in capillaries (MIMIC), and solvent-assisted micromolding (SAMIM). They can be widely used in various fields. In nanoimprint lithography process, the controlling of pattern defect, alignment, and full area imprinted pattern are among the hot topics. Recently, a great deal of attention has been paid to soft UV nanoimprint because of the full area conformal contact with the substrate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67:3114–3116

    Article  Google Scholar 

  2. Perez J (1998) Physics and mechanics of amorphous polymer. A.A Balkema, Rotterdam

    Google Scholar 

  3. Chou S, Krauss P, Zhang W, Guo L, Zhuang L (1997) Sub-10 nm imprint lithography and applications. J Vac Sci Technol 15:2897–2904

    Article  Google Scholar 

  4. Haisma J, Verheijen M, van den Heuvel K, van den Berg J (1996) Mold-assisted nanolithography: a process for reliable pattern replication. J Vac Sci Technol B 14:4124–4128

    Article  Google Scholar 

  5. Landis S, Chaix N, Gourgon C, Perret C, Leveder T (2006) Stamp design effect on 100 nm feature size for 8 inch nanoimprint lithography. Nanotechnology 17:2701–2709

    Article  Google Scholar 

  6. Xia YN, Whiteside GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Article  Google Scholar 

  7. Whiteside GM (1994) Microfabrication by microcontact printing of self-assembled monolayers. Adv Mater 6:600–604

    Article  Google Scholar 

  8. Xia Y, Ki E, Zhao XM, Rogers JA (1996) Complex optical surfaces formed by replica molding against elastomeric masters. Science 273:347–349

    Article  Google Scholar 

  9. Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B (1999) Step and flash imprint lithography: a new approach to high-resolution patterning. Proc SPIE 3776:379–389

    Article  Google Scholar 

  10. Zhao XM, Smith SP, Waldman SJ, Whiteside GM (1997) Demonstration of waveguide couplers fabricated using microtransfer molding. Appl Phys Lett 71:1017–1019

    Article  Google Scholar 

  11. Kim E, Xia Y, Whitesides GM (1995) polymer microstructures formed by moulding in capillaries. Nature 376:581–584

    Article  Google Scholar 

  12. King E, Xia Y, Zhao XM, Whitesides GM (2004) Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers. Adv Mater 9:651–654

    Article  Google Scholar 

  13. Jeon S (2004) Three-dimensional nanofabrication with rubber stamps and conformable photomasks. Adv Mater 16:1369–1371

    Article  MathSciNet  Google Scholar 

  14. Rogers JA, Paul KE, Jackman RJ, Whitesides GM (1997) Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field. Appl Phys Lett 70:2658–2660

    Article  Google Scholar 

  15. Childs WR, Nuzzo RG (2002) Decal transfer microlithography: a new soft-lithographic patterning method. J Am Chem Soc 124:13583–13596

    Article  Google Scholar 

  16. Xu Q, Rioux RM, Dickey MD, Whitesides GM (2008) Nanoskiving: a new method to produce arrays of nanostructures. Acc Chem Res 41:1566–1577

    Article  Google Scholar 

  17. Chou SY, Keimel C, Gu J (2002) Ultrafast and direct imprint of nanostructures in silicon. Nature 417:835–883

    Article  Google Scholar 

  18. Geogge A, Blank DH, Ten Elshof JE (2009) Nanopatterning from the gas phase: high resolution soft lithographic patterning of organosilane thin films. Langmuir 25(23):13298–13301

    Article  Google Scholar 

  19. Huang XD, Bao LR (2002) Reversal imprinting by transferring polymer from mold to substrate. J Vac Sci Technol B 20:2872–2876

    Article  Google Scholar 

  20. Cui Z (2008) Nanofabrication. Springer, Heidelberg

    Book  Google Scholar 

  21. Cheng X, Guo LJ (2004) One-step lithography for various size patterns with a hybrid mask mold. Microelectron Eng 71:288–293

    Article  Google Scholar 

  22. Guo LJ (2004) Recent progress in nanoimprint technology and its applications. J Phys D: Appl Phys 37:R123–R141

    Article  Google Scholar 

  23. Tan H, Gilbertson A, Chou SY (1998) Roller nanoimprint lithography. J Vac Sci Technol B 16:3926–3928

    Article  Google Scholar 

  24. Suh KY, Kim YS, Lee HH (2001) Capillary force lithography. Adv Mater 13:1386–1389

    Article  Google Scholar 

  25. Inkyu P, Heng P, Seung H, Albert P (2008) Micro/nanoscale structure fabrication by direct nanoimprinting of metallic and semiconducting nanoparticles. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Seattle, 2007, pp 307–314

    Google Scholar 

  26. Choi JH, Lee SW, Choi DG, Kim KD (2008) Direct UV-imprint lithography using conductive nanofiller-dispersed UV-curable resin. J Vac Sci Technol B 26:1390–1394

    Article  Google Scholar 

  27. Choi JH, Lee SW, Kim KD, Chio DG (2009) Nanosilver particles-based conductive patterns developed by direct soft imprint lithography. Current Applied Physics 9:S138–S140

    Article  Google Scholar 

  28. Vieira SMC, Teo KB, Milne WI, Gröning O, Gangloff L, Minoux E (2006) Investigation of field emission properties of carbon nanotube arrays defined using nanoimprint lithography. Appl Phys Lett 89:12301–12303

    Article  Google Scholar 

  29. Wang PT, Guo JB, Wang HH, Zhang Y, Wei J (2009) Functionalized multi-walled carbon nanotubes filled ultraviolet curable resin nanocomposites and their applications for nanoimprint lithography. J Phys Chem C 113:8118–8123

    Article  Google Scholar 

  30. Xia QF, Yang JJ, Wu W (2010) Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step. Nano Lett 10(8):2909–2914

    Article  Google Scholar 

  31. Hua F, Sun Y, Gaur A, Meitl MA, Bilhaut L, Rotkina L, Wang JF, Geil P, Shim M, Rogers JA (2004) Polymer imprint lithography with molecular-scale resolution. Nano Lett 4(12):2467–2471

    Article  Google Scholar 

  32. Ran J, Michael H, Verschuurenb MA, Van de Laar R, Van Eekelen J, Ulrich P, Michael M, Christian M (2010) UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED. Microelectron Eng 87:963–967

    Article  Google Scholar 

  33. McMackin I, Choi J, Schumaker P, Nguyen P (2004) Step and repeat UV nanoimprint lithography tools and processes. Proc SPIE 5374:222–231

    Article  Google Scholar 

  34. Ahn SH, Guo LJ (2009) Large-area roll to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3:2304–2310

    Article  Google Scholar 

  35. Ratchev S (2010) Precision assembly technologies and systems: 5th IFIP WG 5.5 international precision assembly seminar. Springer, Heidelberg

    Google Scholar 

  36. Choi SJ, Yoo PJ, Beak SJ, Kim TW, Lee HH (2004) An ultraviolet-curable mold for sub-100-nm lithography. J Am Chem Soc 126:7744–7746

    Article  Google Scholar 

  37. Zhang W, Chou SY (2001) Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers. Appl Phys Lett 79:845–847

    Article  Google Scholar 

  38. Fuchs A, Vratzov B, Wahlbrink B, Georgiev Y, Kurz H (2004) Interferometric in situ alignment for UV-based nanoimprint. J Vac Sci Technol B 22:3242–3245

    Article  Google Scholar 

  39. Muhlberger M (2007) A Moiré method for high accuracy alignment in nanoimprint lithography. Microelectron Eng 84:925–992

    Article  Google Scholar 

  40. Maluf N, Williams K (2004) An introduction to microelectromechanical systems engineering. Artech House Inc., London

    Google Scholar 

  41. Kovacs GTA, Maluf NI, Petersen KE (1998) Bulk micromachining of silicon. Proc IEEE 86:1536–1551

    Article  Google Scholar 

  42. Hedlund C, Lindberg U, Bucht U, Soderkvist J (1993) Anisotropic etching of Z-cut quartz. J Micromech Microeng 3:65–73

    Article  Google Scholar 

  43. Seidel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions. J Electrochem Soc 137:3612–3632

    Article  Google Scholar 

  44. Senturia SD (2002) Microsystem design. Kluwer Academic Publishers, New York

    Google Scholar 

  45. Larmer F, Schilp P (1994) Method of anisotropically etching silicon. German Patent DE 4241045

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, W. (2013). Nanoimprint Lithography Process. In: Nanoimprint Lithography: An Enabling Process for Nanofabrication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34428-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34428-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34427-5

  • Online ISBN: 978-3-642-34428-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics