Skip to main content

Abstract

Nanoimprint lithography is a simple process. In short, a substrate is coated with resin, and the stamp is pressed into the resin by mechanical deformation of imprint resist. The imprint resist is cured by heat or UV light during the imprinting process. Then, the mold is released from the substrate, referred to as demolding. Subsequent processes, such as plasma etching and lift-off, are applied for the pattern transferring [1]. The schematic of the nanoimprint lithography processes is given in Fig. 4.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67:3114–3116

    Article  Google Scholar 

  2. Okada M, Kang YJ, Nakamatsu IM, Kanda K, Haruyama Y, Matsui S (2009) Characterization of nanoimprint resin and antisticking layer by scanning probe microscopy. J Photopolymer Sci Technol 22:167–169

    Article  Google Scholar 

  3. Brockmann W, Geiß PL, Klingen J (2009) Adhesive bonding: materials, applications and technology. Wiley, Weinheim

    Google Scholar 

  4. Alphonsus VP (2002) Adhesion and adhesives technology: an introduction. Hanser, Zurich

    Google Scholar 

  5. Matthias W (2009) Hot embossing: theory and technology of microreplication. William Andrew Inc, New York

    Google Scholar 

  6. Reinhardt KA (2008) Handbook of silicon wafer cleaning technology. William Andrew Inc, New York

    Google Scholar 

  7. Mittal KL (2009) Contact angle, wettability and adhesion. IDC Publishers, Leiden

    Google Scholar 

  8. Nalwa HS (2002) Handbook of the thin film materials, vol 5, Nanomaterials and magnetic thin films. Academic, San Diego

    Google Scholar 

  9. Yang W, Cui FZ, Qing X (2005) Behavior of phosphatidylcholine adsorption on CNx coated PTFE films. Curr Appl Phys 6:827–832

    Article  Google Scholar 

  10. Caro JC, Lappan U, Lunkwitz K (1999) Insertion of sulfur-containing functional groups into polytetrafluoroethylene (PTFE) by low pressure plasma treatment. Surf Coat Tech 116–119:792–795

    Article  Google Scholar 

  11. Zelsmann M, Truffier-Boutry D, Francone A, Alleaume C, Kurt I, Beaurain A, Pelissier B, Pépin-Donat B, Lombard C, Boussey J (2009) Double-anchoring fluorinated molecules for antiadhesion mold treatment in UV nanoimprint lithography. J Vac Sci Technol B 27:2873–2876

    Article  Google Scholar 

  12. Truffier-Boutry D, Beaurain A, Galand R, Pelissier B, Boussey J, Zelsmann M (2010) XPS study of the degradation mechanism of fluorinated anti-sticking treatments used in UV nanoimprint lithography. Microelectron Eng 87:122–124

    Article  Google Scholar 

  13. Beck M, Ling TGI, Graczyk M, Montelius L, Heidari B (2005) Development and characterization of silane antisticking layers on nickel-based stamps designed for nanoimprint lithography. J Vac Sci Technol B 23:575–584

    Article  Google Scholar 

  14. Park S, Schift H, Padeste C, Schnyder B (2004) Anti-adhesive layers on nickel stamps for nanoimprint lithography. Microelectron Eng 73–74:196–201

    Article  Google Scholar 

  15. Truffier-Boutry D, Galand R, Beaurain A, Francone A, Pelissier B, Zelsmann M, Boussey J (2009) Mold cleaning and fluorinated anti-sticking treatments in nanoimprint lithography. Microelectron Eng 86(4–6):669–672

    Article  Google Scholar 

  16. Hilfiker JN, Singh N, Tiwald T, Convey D, Smith SM, Baker JH, Tompkins HG (2008) Survey of methods to characterize thin absorbing films with pectroscopic Ellipsometry. Thin Solid Films 516:7979–7989

    Article  Google Scholar 

  17. Veeco Metrology Group, MultiModeTM SPM Instruction Manual (2004) Veeco Instruments Inc.

    Google Scholar 

  18. Yasuda Y (1985) Plasma polymerization. Academic, Orlando

    Google Scholar 

  19. Gaur S, Vergason G (2000) Plasma polymerization: theory and practice. 43rd annual technical conference proceedings, Denver, 15–20 April 2000

    Google Scholar 

  20. Jaszewski RW, Schift H, Schnyder B, Schneuwly A (1999) The deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing. Appl Surf Sci 143:301–308

    Article  Google Scholar 

  21. Bigelow WC, Pickett DL, Zisman WA (1946) Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. J Colloid Interface Sci 1:513–538

    Google Scholar 

  22. Lee H, Dellatore S, Miller WM (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  Google Scholar 

  23. Maboudian R, Ashurst WR, Carraro C (2000) Self-assembled monolayers as anti-stiction coating for MEMS: characteristics and recent developments. Sensor Actuator 82:219–223

    Article  Google Scholar 

  24. Beck M, Graczyk M, Maximov I, Sarwe EL, Ling TGI, Keil M (2002) Improving stamps for 10 nm level wafer scale nanoimprint lithography. Microelectron Eng 61–62:441–448

    Google Scholar 

  25. Tada Y, Yoshida H, Miyauchi A (2007) Analysis on deterioration mechanism of release layer in nanoimprint process. J Photopolymer Sci Technol 20:545–548

    Article  Google Scholar 

  26. Nakai Y, Ommoto S, Kang Y, Okada M, Kanda K, Haruyama Y, Matsui S (2010) Evaluation of heat durability of fluorinated antisticking layers. J Photopolymer Sci Technol 23:55–58

    Article  Google Scholar 

  27. Voevodin AA, Donley MS (1996) Preparation of amorphous diamond-like carbon by pulsed laser deposition: a critical review. Surf CoatTechnol 82:199–213

    Article  Google Scholar 

  28. Altun AO, Jeong JH, Choi DG, Kim KD, Lee ES (2006) Fabrication of fluorine-doped diamond-like carbon stamps for UV nanoimprint lithography. Nanotechnology 17:4659–4663

    Article  Google Scholar 

  29. Schvartzman M, Mathur A, Yang Y, Jahnes C, Hone J, Wind SJ (2008) Fluorinated diamond like carbon templates for nanoimprint lithography. J Vac Sci Technol B 26(6):2394–2398

    Article  Google Scholar 

  30. Konijn M (2005) Multilevel nanoengineering for imprint lithography. Dissertation, University of Canterbury

    Google Scholar 

  31. Rabilloud G (2000) High performance polymers: chemistry and applications, vol 2. Editions Technip, Paris

    Google Scholar 

  32. Faircloth B, Rohrs H, Tiberio R (2000) Bilayer, nanoimprint lithography. J Vac Sci Technol B18:1866–1873

    Google Scholar 

  33. Zhao H, Zhang J, Wu NQ, Zhang X, Crowley K, Weber SG (2005) Transport of organic solutes through amorphous teflon AF films. J Am Chem Soc 127:15112–15119

    Article  Google Scholar 

  34. Alentiev AY, Shantarovich VP, Merkel TC, Bondar VI, Freeman BD (2005) Gas and vapor sorption, permeation, and diffusion in glassy amorphous Teflon AF1600. Macromolecules 35:9513–9522

    Article  Google Scholar 

  35. Lee MJ, Lee NY, Lim JR, Kim JB, Kim M, Baik HK, Kim YS (2006) Antiadhesion surface treatments of molds for high-resolution unconventional lithography. Adv Mater 18:3115–3119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, W. (2013). Stamp Surface Treatment. In: Nanoimprint Lithography: An Enabling Process for Nanofabrication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34428-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34428-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34427-5

  • Online ISBN: 978-3-642-34428-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics