Skip to main content
  • 2202 Accesses

Abstract

Nanoimprint lithography is a replication technique in essence, which can copy a master geometry. The master, also known as the template, the stamp, or the mold, is different from a mask for photolithography. The template material and geometrical parameters directly affect the template deformation and the quality of transfer pattern. Alignment accuracy is determined by the mark pattern on the master; also, the pattern transfer resolution is affected by the master geometry. Therefore, the production of high-quality, high-precision imprint template is a key issue. Besides, evaluation and repair for nanoimprint mold are increasingly becoming a focus. The aforementioned issue is a bottleneck for nanoimprint lithography process. Therefore, research on the stamp must be distinctly elucidated. There are three types of molds: hard mold, soft mold, and rigiflex mold. Silicon, quartz, or metals are used for hard mold, whereas polymers are typically used for soft and rigiflex molds. There are many methods for stamp fabrication, which have conventional and unconventional techniques. In the chapter, stamp materials, stamp fabrication, and evaluation of mold have been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viheriälä J, Viljanen M, Kontio J, Leinonen T, Tommila J, Dumitrescu M, Niemi T, Pessa M (2009) Soft stamp ultraviolet-nanoimprint lithography for fabrication of laser diodes. Proc SPIE 7271:72711O-1–72711O-10

    Google Scholar 

  2. Han T, Madden S, Bulla D, Debbarma S, Luther-Davies B (2011) Direct molding Chalcogenide glass waveguides using thermal nanoimprint lithography with a soft PDMS stamp. Conference on lasers and electro-optics Europe and 12th European quantum electronics conference, 22–26 May 2011

    Google Scholar 

  3. Park S, Choi K, Kim G, Lee J (2009) Nanoscale patterning with the double-layered soft cylindrical stamps by means of UV-nanoimprint lithography. Microelectron Eng 86:604–607

    Article  Google Scholar 

  4. Chen Y, Roy E, Kanamori Y, Belotti M, Decanini D (2004) Soft nanoimprint lithography. Proc SPIE 5645:283–288

    Article  Google Scholar 

  5. Plachetka U, Bender M, Fuchs A, Vratzov B, Glinsner T, Lindner F, Kurz H (2004) Wafer scale patterning by soft UV-nanoimprint lithography. Microelectron Eng 73–74:67–171

    Google Scholar 

  6. Hawkes PW (2006) Advances in imaging and electron physics, vol 140. Academic, San Diego

    Google Scholar 

  7. Kettle J, Hoyle RT, Dimov S, Perks RM (2008) Fabrication of complex 3D structures using step and flash imprint lithography (S-FIL). Microelectron Eng 85:853–855

    Article  Google Scholar 

  8. Park S, Schift H, Solak HH, Gobrecht J (2004) Stamps for nanoimprint lithography by extreme ultraviolet interference lithography. J Vac Sci Technol B 22:3246–3250

    Article  Google Scholar 

  9. Light Source Facilities. http://www.lightsources.org/cms/?pid=1000098. Accessed 20 Nov 2011

  10. Luo Y (2007) Nanostructures design and fabrication for magnetic storage applications. Dissertation, North Carolina State University

    Google Scholar 

  11. Zhao YP, Berenschot E, Boer MD, Jansen H, Tas N, Huskensv J, Elwenspoek M (2008) Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithography. J Micromech Microeng 18:064013–064018

    Article  Google Scholar 

  12. Choi YK, Lee JS, Zhu J et al (2003) Sublithographic nanofabrication technology for nanocatalysts and DNA chips. J Vac Sci Technol B 21:2951–2955

    Article  Google Scholar 

  13. Choi YK, Zhu J, Grunes J et al (2003) Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography. J Phys Chem B 107:3340–3343

    Article  Google Scholar 

  14. Yan XM, Kwon S, Contreras AM et al (2005) Fabrication of large number density platinum nanowire arrays by size reduction lithography and nanoimprint lithography. Nano Lett 5: 745–748

    Article  Google Scholar 

  15. Contreras AM, Yan XM, Kwon S et al (2006) Catalytic CO oxidation reaction studies on lithographically fabricated platinum nanowire arrays with different oxide supports. Catal Lett 111(1–2):5–13

    Article  Google Scholar 

  16. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent. Nanopart Opt 105:5599–5611

    Google Scholar 

  17. Hulteen JC, Van Duyne RP (1994) Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol A 13:1553–1558

    Article  Google Scholar 

  18. Jeong GH, Park JK, Lee KK et al (2010) Fabrication of low-cost mold and nanoimprint lithography using polystyrene nanosphere. Microelectron Eng 87:51–55

    Article  Google Scholar 

  19. Murphy PF, Morton KJ, Fu ZL, Chou Y (2007) Nanoimprint mold fabrication and replication by room-temperature conformal chemical vapor deposition. Appl Phys Lett 90:203115–203117

    Article  Google Scholar 

  20. Li MQ, Christopher K, Ober CK (2006) Block copolymer patterns and templates. Mater Today 9:3–39

    Google Scholar 

  21. Park M, Harrison C, Chaikin PM, Register RA, Adamson DH (1997) Block copolymer lithography: periodic arrays of 1011 holes in 1 square centimeter. Science 276:1401–1404

    Article  Google Scholar 

  22. Guarini KW, Black CT, Milkove KR, Sandstrom RL (2001) Nanoscale patterning using self-assembled polymers for semiconductor applications. J Vac Sci Technol B 19:2874–2878

    Article  Google Scholar 

  23. Jung YS, Lee JH, Lee JY, Ross CA (2010) Fabrication of diverse metallic nanowire arrays based on block copolymer self-assembly. Nano Lett 10:3722–3726

    Article  Google Scholar 

  24. Liang Y, Zhen C, Zou D, Xu DJ (2004) Preparation of free-standing nanowire arrays on conductive substrates. J Am Chem Soc 126:16338–16339

    Article  Google Scholar 

  25. Lee JS, Gu GH, Kim H, Jeong KS, Bae J, Suh JS (2001) Growth of carbon nanotubes on anodic aluminum oxide templates: fabrication of a tube-in-tube and linearly joined tube. Chem Mater 13:2387–2391

    Article  Google Scholar 

  26. Dickey MD, Weiss EA, Smythe EJ, Chiechi RS, Capasso F, Whitesides GM (2008) Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation. ACS Nano 2:800–808

    Article  Google Scholar 

  27. Deb P, Kim HY, Rawat V, Oliver M, Kim S, Marshall M, Stach E, Sands T (2005) Faceted and vertically aligned GaN nanorod arrays fabricated without catalysts or lithography. Nano Lett 5:1847–1851

    Article  Google Scholar 

  28. Masuda H, Ohya M, Nishio K, Asoh H, Nakao M, Nohtomi M, Yokoo A, Tamamura T (2000) Photonic band gap in anodic porous alumina with extremely high aspect ratio formed in phosphoric acid solution. Jpn J Appl Phys 9:L1039–L1041

    Article  Google Scholar 

  29. Jian YL, Hope C, Yin A, Xu J (2002) Two-dimensional lateral superlattices of nanostructures: nonlithographic formation by anodic membrane template. J Appl Phys 91:2544–2546

    Article  Google Scholar 

  30. Crouse D, Lo YH, Miller AE, Crouse M (2000) Self-ordered pore structure of anodized aluminum on silicon and pattern transfer. Appl Phys Lett 76:49–51

    Article  Google Scholar 

  31. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468

    Article  Google Scholar 

  32. Yanagishita T, Nishio K, Masudaa H (2010) Fabrication of two-dimensional polymer photonic crystals by nanoimprinting using anodic porous alumina mold. J Vac Sci Technol B 28: 398–400

    Article  Google Scholar 

  33. Zhou Y, Asbah I, Luo G, Eriksson T, Yamada S (2010) High volume manufacturing of nano imprint lithography produced devices: addressing the stamp supply challenge. Proc SPIE 7637:76371–76379

    Article  Google Scholar 

  34. Durney LJ (1984) Electroplating engineering handbook, 4th edn. Van Nostrand Reinhold, New York

    Google Scholar 

  35. Eriksson T, Yamada S, Venkaatesh P (2011) High volume nanoimprint lithography on III/V substrates: imprint fidelity and stamp lifetime. Microelectron Eng 88:293–299

    Article  Google Scholar 

  36. Hye Lee JH, Kimb KS, Lee BK, Kimb NH (2008) Performance and characteristics of SiO2 imprint mould fabricated by liquid-phase deposition. Superlattices Microstruct 44:520–527

    Article  Google Scholar 

  37. Haatainen T, Makela T, Ahopelto J, Kawaguchi Y (2009) Imprinted polymer stamps for UV-NIL. Microelectron Eng 86:2293–2296

    Article  Google Scholar 

  38. Xie XN, Chung HJ, Sow CH, Wee ATS (2006) Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Mater Sci Eng R 54:1–48

    Article  Google Scholar 

  39. Hansen HN, Hochen RJ, Tosello G (2011) Replication of micro and nano surface geometries. CIRP Ann Manuf Technol 60:695–714

    Article  Google Scholar 

  40. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37(5):551–575

    Article  Google Scholar 

  41. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 2003(75):6544–6554

    Article  Google Scholar 

  42. Hui CY, Jagota A, Lin YY, Kramer EJ (2002) Constraints on microcontact printing imposed by stamp deformation. Langmuir 18:1394–1407

    Article  Google Scholar 

  43. Delamarche E, Schmid H, Michel B, Biebuyck H (1997) Stability of molded polydimethylsiloxane microstructures. Adv Mater 9:741–746

    Article  Google Scholar 

  44. Bietsch A, Michel B (2000) Conformal contact and pattern stability of stamps used for soft lithography. J Appl Phys 88:4310–4319

    Article  Google Scholar 

  45. Schmid H, Michel B (2000) Siloxane polymers for high – resolution, high-accuracy soft lithography. Macromol 33:3042–3049

    Article  Google Scholar 

  46. Egerton RF (2005) Physical principles of electron microscopy. Springer, Heidelberg

    Book  Google Scholar 

  47. Seizō M, Franz J, Giessibl RW (2009) Noncontact atomic force microscopy. Springer, Heidelberg

    Google Scholar 

  48. Ludwig R (1998) Scanning electron microscopy: physics of image formation and microanalysis. Springer, Heidelberg

    Google Scholar 

  49. Brian H, John JL (1993) Optical microscopy: emerging methods and applications. Academic, San Diego

    Google Scholar 

  50. Lee HJ, Soles CL, Ro HW, Jones RL, Lin EK, Karim A, Wu WL, Hines DR (2006) Characterizing nano-imprint pattern cross-section and fidelity from x-ray reflectivity. Proc SPIE 6151:61510N–61516N

    Article  Google Scholar 

  51. Li XL, Wang QK, Zhang J, Zhou WM, Liu YB, Wan YZ, Niu XM (2009) Large area nanosize array stamp for UV-based nanoimprint lithography fabricated by size reduction process. Microelectron Eng 86:2015–2019

    Article  Google Scholar 

  52. The ITRS International Technology Working Groups, International Technology Roadmap for semiconductors. http://www.itrs.net/Links/2011ITRS/Home2011.htm. Accessed 20 Nov 2011

  53. Robert J, Hu LL, Eriksson T et al (2009) A non-destructive metrology solution for detailed measurements of imprint templates and media. Proc SPIE 7488:74881Z-1–74881Z-13

    Google Scholar 

  54. Zhou WM, Min GQ, Zhang J, Liu YB, Wang JH, Zhang YP, Sun F (2011) Nanoimprint lithography: a processing technique for nanofabrication advancement. Nano Micro Lett 3:135–140

    Google Scholar 

  55. Macintyre DS, Chen Y, Lim D, Thoms S (2001) Fabrication of T gate structures by nanoimprint lithography. J Vac Sci Technol B 19:2797–2800

    Article  Google Scholar 

  56. Li MT, Chen L, Chou SY (2001) Direct three-dimensional patterning using nanoimprint lithography. Appl Phys Lett 78:3322–3324

    Article  Google Scholar 

  57. Peng C, Liang XG, Fu ZL, Chou SY (2007) High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing. J Vac Sci Technol B 25:410–414

    Article  Google Scholar 

  58. Oh SS, Choi CG, Kim YS (2010) Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process. Microelectron Eng 87:2328–2331

    Article  Google Scholar 

  59. Thomas G, Gerald K (2010) Nanoimprint lithography: the technology makes its mark on CMOS image sensors and in the nano-world. Optik Photonik 2:42–45

    Google Scholar 

  60. Ong NS, Koh YH, Fu YQ (2002) Microlens array produced using hot embossing process. Microelectron Eng 60:365–379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, W. (2013). Stamp Fabrication. In: Nanoimprint Lithography: An Enabling Process for Nanofabrication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34428-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34428-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34427-5

  • Online ISBN: 978-3-642-34428-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics