Advertisement

Selfish Genes and Evolutionary Computation

  • Jan ZelinkaEmail author
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 4)

Abstract

This paper deals with the relation between the so-called selfish genes and evolutionary computing without wishing to immerse into the biological evolution theories. The main goal is to show how a selfish gene could appear and how it is possible to demonstrate the presence of a selfish gene. We also want to answer the question if and how can the selfish gene be beneficial in the evolutionary computing.

Keywords

Evolution Theory Evolutionary Computation Logic System Stable Strategy Empirical Science 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vondrejs, V.: What is a gene? Vesmír 2(91), 76–79 (2012)Google Scholar
  2. 2.
    Dawkins, R.: The selfish gene. Popular Science. Oxford University Press (1989)Google Scholar
  3. 3.
    Flegr, J.: Frozen Evolution: Or, That’s Not the Way It Is, Mr. Darwin - Farewell to Selfish Gene. Booksurge Llc (2008)Google Scholar
  4. 4.
    Blackmore, S.: The meme machine. Popular Science. Oxford University Press (2000)Google Scholar
  5. 5.
    Tseng, G.C., Wong, W.H.: Tight clustering: A resampling-based approach for identifying stable and tight patterns in data. Biometrics 61(1), 10–16 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Darwin, C.: On the Origin of Species by Means of Natural Selection. Murray (1859)Google Scholar
  7. 7.
    Ridley, M.: Evolution. Blackwell Pub. (2004)Google Scholar
  8. 8.
    Hamilton, W.D.: Extraordinary Sex Ratios. Science 156(3774), 477–488 (1967)CrossRefGoogle Scholar
  9. 9.
    Hines, W.: Evolutionary Stable Strategies: A review of basic theory. Theoretical Population Biology 31(2), 195–272 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Altenberg, L.: The evolution of evolvability in genetic programming (1994)Google Scholar
  11. 11.
    Koza, J.R.: Genetic programming (1997)Google Scholar
  12. 12.
    Dawkins, R.: Climbing mount improbable. Penguin science. Penguin (1997)Google Scholar
  13. 13.
    Corno, F., Sonza Reorda, M., Squillero, G.: The selfish gene algorithm: a new evolutionary optimization strategy. In: SAC: ACM Symposium on Applied Computing, pp. 349–355 (1998)Google Scholar
  14. 14.
    Zhang, J., Bushnell, M.L., Agrawal, V.D.: On random pattern generation with the selfish gene algorithm for testing. In: Digital Sequential Circuits, Proc. International Test Conf., pp. 617–626 (2004)Google Scholar
  15. 15.
    Onoyama, T., Maekawa, T., Sakurai, Y., Tsuruta, S., Komoda, N.: Selfish constraint satisfaction genetic algorithm for planning a long-distance transportation network. JCP 3(8), 77–85 (2008)CrossRefGoogle Scholar
  16. 16.
    Barta, Z., Flynn, R., Giraldeau, L.A.: Geometry for a selfish foraging group: a genetic algorithm approach. Proceedings of the Royal Society, London, B 264, 1233–1238 (1997)CrossRefGoogle Scholar
  17. 17.
    van der Meijs, F.: Implementation of the parallel selfish gene genetic algorithm (2008)Google Scholar
  18. 18.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus (2006)Google Scholar
  19. 19.
    Čapek, K., Selver, P., Playfair, N.: R.U.R. Thrift Edition Series. Dover Publications (2001)Google Scholar
  20. 20.
    András, P.: The Role of Brain Chaos. In: Wermter, S., Austin, J., Willshaw, D.J. (eds.) Emergent Neural Computational Architectures Based on Neuroscience. LNCS (LNAI), vol. 2036, pp. 296–310. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Zelinka, I., Celikovský, S., Richter, H., Chen, G.: Evolutionary Algorithms and Chaotic Systems. SCI. Springer (2010)Google Scholar
  22. 22.
    Kelso, J.: Dynamic patterns: the self-organization of brain and behavior. In: Complex Adaptive Systems. MIT Press (1995)Google Scholar
  23. 23.
    Romportl, J.: Consciousness and causal paradox of emergent systems. In: Interdisciplinary aspects of human-machine co-existence and co-operation, Prague, Czech Technical University, pp. 97–105 (2005)Google Scholar
  24. 24.
    Zelinka, J., Romportl, J., Müller, L.: A Priori and A Posteriori Machine Learning and Nonlinear Artificial Neural Networks. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS, vol. 6231, pp. 472–479. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Cybernetics, Faculty of Applied SciencesUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations