Voice Conservation: Towards Creating a Speech-Aid System for Total Laryngectomees

  • Zdeněk HanzlíčekEmail author
  • Jan Romportl
  • Jindřich Matoušek
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 4)


This paper describes the initial experiments on voice conservation of patients with laryngeal cancer in an advanced stage. The final aim is to create a speechaid device which is able to “speak” with their former voices. Our initial work is focused on applicability of speech data from patients with an impaired vocal tract for the purposes of speech synthesis. Preliminary results indicate that appropriately selected synthesis method can successfully learn a new voice, even from speech data which is of a lower quality.


Vocal Tract Speech Data Speech Synthesis Speech Enhancement Prosodic Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Denby, B., Schultz, T., Honda, K., Hueber, T., Gilbert, J., Brumberg, J.: Silent speech interfaces. Speech Communication 52, 270–287 (2010)CrossRefGoogle Scholar
  2. 2.
    Doi, H., Nakamura, K., Toda, T., Saruwatari, H., Shikano, K.: An Evaluation of Alaryngeal Speech Enhancement Methods based on Voice Conversion Techniques. In: Proceedings of ICASSP 2011, pp. 5136–5139 (2011)Google Scholar
  3. 3.
    Hanzlíček, Z.: Czech HMM-Based Speech Synthesis. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS, vol. 6231, pp. 291–298. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Hanzlíček, Z.: Czech HMM-Based Speech Synthesis: Experiments with Model Adaptation. In: Habernal, I., Matoušek, V. (eds.) TSD 2011. LNCS, vol. 6836, pp. 107–114. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Matoušek, J., Romportl, J.: Recording and Annotation of Speech Corpus for Czech Unit Selection Speech Synthesis. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 326–333. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Nakamura, K., Toda, T., Saruwatari, H., Shikano, K.: Speaking Aid System for Total Laryngectomees using Voice Conversion of Body Transmitted Artificial Speech. In: Proceedings of Interspeech 2006, pp. 1395–1398 (2006)Google Scholar
  7. 7.
    Nakamura, K., Toda, T., Saruwatari, H., Shikano, K.: The use of air-pressure sensor in electrolaryngeal speech enhancement based on statistical voice conversion. In: Proceedings of Interspeech 2010, pp. 1628–1631 (2010)Google Scholar
  8. 8.
    Stanislav, P., Psutka, J.: Influence of different phoneme mappings on the recognition accuracy of electrolaryngeal speech. In: Proceedings of Sigmap 2012 (2012)Google Scholar
  9. 9.
    Yamagishi, J., Kobayashi, T., Nakano, Y., Ogata, K., Isogai, J.: Analysis of Speaker Adaptation Algorithms for HMM-Based Speech Synthesis and a Constrained SMAPLR Adaptation Algorithm. IEEE Transactions on Audio, Speech, and Language Processing 17, 66–83 (2009)CrossRefGoogle Scholar
  10. 10.
    Zen, H., Tokuda, K., Black, A.W.: Review: Statistical parametric speech synthesis. Speech Communication 51, 1039–1064 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zdeněk Hanzlíček
    • 1
    Email author
  • Jan Romportl
    • 1
    • 2
  • Jindřich Matoušek
    • 1
  1. 1.Department of Cybernetics, Faculty of Applied SciencesUniversity of West BohemiaPlzeňCzech Republic
  2. 2.Department of Interdisciplinary Activities, New Technologies Research CentreUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations