Advertisement

Towards Formal Analysis of Key Control in Group Key Agreement Protocols

  • Anshu Yadav
  • Anish Mathuria
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7644)

Abstract

In group key agreement protocols, it is desired that every honest participant is assured of its contribution to the shared session key. This property ensures that no dishonest insider or a group of dishonest insiders can predetermine the key. In this paper we propose attacks on the Dutta-Barua protocol in which one or more dishonest insiders are able to control the key. We use the algebraic approach given by Delicata and Schneider to formally analyze the attacks on the protocol.

Keywords

Dishonest Participant Honest Participant Message Template Honest Member Dishonest Member 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pieprzyk, J., Wang, H.: Malleability attacks on multi-party key agreement protocols in dynamic setting. Progress in Computer Science and Applied Logic 23, 277–288 (2004)MathSciNetGoogle Scholar
  2. 2.
    Biswas, G.P.: Diffie-hellman technique: extended to multiple two-party keys and one multi-party key. IET Information Security 2(2), 12–18 (2008)CrossRefGoogle Scholar
  3. 3.
    Tseng, Y.M., Wu, T.Y.: Analysis and improvement on a contributory group key exchange protocol based on the diffie-hellman technique. Informatica, Lith. Acad. Sci. 21(2), 247–258 (2010)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Dutta, R., Barua, R.: Provably secure constant round contributory group key agreement in dynamic setting. IEEE Transactions on Information Theory 54(5), 2007–2025 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution System (extended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Delicata, R., Schneider, S.A.: A Formal Approach for Reasoning About a Class of Diffie-Hellman Protocols. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2005. LNCS, vol. 3866, pp. 34–46. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Delicata, R., Schneider, S.: An algebraic approach to the verification of a class of diffie-hellman protocols. Int. J. Inf. Sec. 6(2-3), 183–196 (2007)CrossRefGoogle Scholar
  8. 8.
    Tan, C.H., Yang, G.: Comments on ”provably secure constant round contributory group key agreement in dynamic setting”. IEEE Transactions on Information Theory 56(11), 5887–5888 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Teo, J.C.M., Tan, C.H., Ng, J.M.: Security analysis of provably secure constant round dynamic group key agreement. IEICE Transactions 89-A(11), 3348–3350 (2006)CrossRefGoogle Scholar
  10. 10.
    Nam, J., Kim, M., Paik, J., Won, D.: Security weaknesses in harn-lin and dutta-barua protocols for group key establishment. TIIS 6(2), 751–765 (2012)Google Scholar
  11. 11.
    Pereira, O.: Modeling and Security Analysis of Authenticated Group Key Agreement Protocols. PhD thesis, Catholic University of Leuven (May 2003)Google Scholar
  12. 12.
    Pereira, O., Quisquater, J.J.: A security analysis of the cliques protocols suites. In: CSFW, pp. 73–81. IEEE Computer Society (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anshu Yadav
    • 1
  • Anish Mathuria
    • 1
  1. 1.Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagarIndia

Personalised recommendations