Skip to main content

A Novel Circuit Design Methodology to Reduce Side Channel Leakage

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7644))

Abstract

To estimate the probable information leakage of a logic circuit through a side channel is a major problem for circuit designers. In this paper a novel circuit design methodology is presented to estimate and reduce the side channel leakage of logic gates. The focus lies on the investigation of side channel leakage during circuit design. With this novel methodology three different logic circuit families are compared. Additionally, the process of improving a logic circuit using this methodology is shown in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Schneider, O., Uffmann, D.: Circuit Configuration for Generating Current Pulses in the Supply Current of Integrated Circuits. US Patent US 7, 017, 048 B2 (March 2006)

    Google Scholar 

  3. Shamir, A.: Protecting Smart Cards from Passive Power Analysis with Detached Power Supplies. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 71–77. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh Re-keying: Security against Side-Channel and Fault Attacks for Low-Cost Devices. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Güneysu, T., Moradi, A.: Generic Side-Channel Countermeasures for Reconfigurable Devices. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 33–48. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Itoh, K., Yajima, J., Takenaka, M., Torii, N.: DPA Countermeasures by Improving the Window Method. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 303–317. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resistant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Coron, J.S., Kizhvatov, I.: Analysis and Improvement of the Random Delay Countermeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation. In: Proceedings on Design, Automation and Test in Europe Conference and Exhibition 2004, vol. 1, pp. 246–251. IEEE Computer Society (February 2004)

    Google Scholar 

  11. Bucci, M., Luzzi, R., Guglielmo, M., Trifiletti, A.: A Countermeasure against Differential Power Analysis based on Random Delay Insertion. In: IEEE International Symposium on Circuits and Systems, ISCAS 2005, vol. 4, pp. 3547–3550. IEEE (May 2005)

    Google Scholar 

  12. Popp, T., Mangard, S.: Masked Dual-Rail Pre-charge Logic: DPA-Resistance Without Routing Constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 172–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Fischer, W., Gammel, B.M.: Masking at Gate Level in the Presence of Glitches. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 187–200. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Toprak, Z., Ienne, P., Paar, C.: Design of Low-Power DPA-Resistant Cryptographic Functional Units. In: Proceedings of the 1st ECRYPT Workshop on Cryptographic Advances in Secure Hardware, CRASH 2005 (2005)

    Google Scholar 

  15. Regazzoni, F., Badel, S., Eisenbarth, T., Groschdl, J., Poschmann, A., Toprak, Z., Macchetti, M., Pozzi, L., Paar, C., Leblebici, Y., Ienne, P.: Simulation-based Methodology for Evaluating DPA-Resistance of Cryptographic Functional Units with Application to CMOS and MCML Technologies. In: Proceedings of International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS IC 2007) (July 2007)

    Google Scholar 

  16. Tiri, K., Verbauwhede, I.: Charge Recycling Sense Amplifier Based Logic: Securing Low Power Security IC’s against Differential Power Analysis. In: Proceeding of the 30th European Solid-State Circuits Conference, ESSCIRC 2004, pp. 179–182. IEEE (September 2004)

    Google Scholar 

  17. Suzuki, D., Saeki, M., Ichikawa, T.: Random Switching Logic: A Countermeasure against DPA based on Transition Probability. Techreport, Mitsubishi Electric Corporation, Mitsubishi Electric Engineering Company Limited, IACR ePrint (2004), eprint.iacr.org/2004/346.pdf

  18. Chen, Z., Zhou, Y.: Dual-Rail Random Switching Logic: A Countermeasure to Reduce Side Channel Leakage. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 242–254. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic with Signal Independent Power Consumption to Withstand Differential Power Analysis on Smart Cards. In: Proceedings of the 29th European Solid-State Circuits Conference, ESSCIRC 2002, pp. 403–406 (2002)

    Google Scholar 

  20. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks (extended version). Cryptology ePrint Archive, Report 2006/139 (2006)

    Google Scholar 

  21. Macé, F., Standaert, F.-X., Quisquater, J.-J.: Information Theoretic Evaluation of Side-Channel Resistant Logic Styles. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 427–442. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Tajalli, A., Vittoz, E., Leblebici, Y., Brauer, E.: Ultra low Power Subthreshold MOS Current Mode Logic Circuits Using a Novel Load Device Concept. In: 33rd European on Solid State Circuits Conference, ESSCIRC 2007, pp. 304–307 (2007)

    Google Scholar 

  23. Poschmann, A.Y.: Lightweight Cryptography: Cryptographic Engineering for a Pervasive World. Europäischer Universitäts-Verlag (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gornik, A., Stoychev, I., Oehm, J. (2012). A Novel Circuit Design Methodology to Reduce Side Channel Leakage. In: Bogdanov, A., Sanadhya, S. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2012. Lecture Notes in Computer Science, vol 7644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34416-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34416-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34415-2

  • Online ISBN: 978-3-642-34416-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics