Stochastic Stability Analysis of MIMO Networked Control Systems with Multi-quantizers

  • Haoliang Bai
  • Dajun Du
  • Minrui Fei
  • Zhihua Song
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 324)


This paper is concerned with stochastic stability analysis of MIMO NCSs with multi-channel communication constrain and multi-quantizers. With communication constrains treated as packet disordering and quantization error treated as sector-bounded uncertainty, the closed-loop system is firstly modeled as a Markov jump linear system (MJLS). A stochastically stable condition has then been derived, and the main results are further extended to MIMO NCSs with parameter uncertainty. Finally, simulation results confirm the effectiveness of the proposed method.


Networked control systems packet disordering quantization stochastic stability Markov jump linear system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moyne, J.R., Tilbury, D.M.: The Emergence of Industrial Control Networks for Manufacturing Control, Diagnostics, and Safety Data. J. Proceedings of the IEEE. 95, 29–47 (2007)CrossRefGoogle Scholar
  2. 2.
    Antsaklis, P., Baillieul, J.: Special Issue on Technology of Networked Control Systems. J. Proceedings of the IEEE 95, 5–8 (2007)CrossRefGoogle Scholar
  3. 3.
    Baillieul, J., Antsaklis, P.J.: Control and Communication Challenges in Networked Real-time Systems. J. Proceedings of the IEEE 95(1), 9–28 (2007)CrossRefGoogle Scholar
  4. 4.
    Yang, R.N., Shi, P., Liu, G.P., Gao, H.J.: Network-based Feedback Control for System with Mixed Delays Based on Quantization and Dropout Compensation. J. Automatica 47, 2805–2809 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Wang, S.B., Meng, X.Y., Chen, T.W.: Wide-area Control of Power Systems Through Delayed Network Communication. J. IEEE Transactions on Control Systems Technology 20(2), 495–503 (2012)CrossRefGoogle Scholar
  6. 6.
    Du, D.J., Fei, M.R., Jia, T.G.: Modelling and Stability Analysis of MIMO Networked Control systems with multi-channel random packet losses. J. Transactions of the Institute of Measurement and Control, doi:10.1177/0142331211406605Google Scholar
  7. 7.
    Li, J.N., Zhang, Q.L., Yu, H.B., Cai, M.: Real-time Guaranteed Cost Control of MIMO Networked Control Systems with Packet Disordering. J. Journal of Process Control 21(6), 967–975 (2011)CrossRefGoogle Scholar
  8. 8.
    Coutinho, D.F., Fu, M.Y., De Souza, C.E.: Input and Output Quantized Feedback Linear Systems. J. IEEE Trans. on Automatic Control 55(3), 761–766 (2010)CrossRefGoogle Scholar
  9. 9.
    Zhang, J., Lam, J., Xia, Y.: Observer-based Output Feedback Control for Discrete Systems with Quantised Inputs. J. IET Control Theory and Applications 3(5), 478–485 (2010)MathSciNetGoogle Scholar
  10. 10.
    Liberzon, D.: Hybrid Feedback Stabilization of Systems with Quantized Signals. J. Automatica 39(9), 1543–1554 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Rasool, F., Nguang, S.K., Krug, M.: Robust H∞ Output Feedback Control of Networked Control Systems With Multiple Quantizers. In: 6th IEEE Conference on Industrial Electronics and Applications, pp. 1541–1546 (2011)Google Scholar
  12. 12.
    Fu, M.Y., Xie, L.: The Sector Bound Approach to Quantized Feedback Control. J. IEEE Transactions on Automatic Control 50, 1698–1711 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, Y., Xie, L., de Souza, C.E.: Robust Control of a class of uncertain non-linear systems. J. System Control Letters 19, 139–149 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Goh, K.C., Turan, L., Safonov, M.G., Papavassilopoulos, G.P., Ly, J.H.: Baffine Matrix Inequality Properties and Computational Methods. In: Proceedings of the American Conference, Maryland, pp. 850–855 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Haoliang Bai
    • 1
  • Dajun Du
    • 1
  • Minrui Fei
    • 1
  • Zhihua Song
    • 1
  1. 1.Shanghai Key Laboratory of Power Station Automation Technology, School of Mechanical Engineering & AutomationShanghai UniversityShanghaiChina

Personalised recommendations